
THE BIOLOGICAL SYSTEM

Genetically modified (transgenic) insecticidal

crops, harboring bacterial genes that encode proteins

specifically toxic for pest larvae, were created to con-

trol the pest invasion. The European corn borer (ECB;

Ostrinia nubilalis Hubner, Lepidoptera: Crambidae)

is a major pest in many maize-growing countries.

Owing to the high tissue levels of Bacillus thuring-

iensis toxin (Bt), the Bt corn is very toxic for the ECB

larvae and can almost completely suppress the pest

throughout the growing season.

The Bt crop technology is an alternative to the

broadly used chemical insecticides and even to the

microbiologically produced Bt insecticides. All field-

sprayed agents have common essential shortcomings:

incomplete coverage of the plant surface, degradation

under UV radiation, instability against heating and

drying, which result in reduced efficiency. Besides,

advanced ECB larvae tunnel deeply into the corn

stalks and ears, which makes the surface insecticide

treatment useless [1, 2]. The Bt-carrying plants are

devoid of such shortcomings and provide for more ad-

equate pest control in the field. However, the risk of

rapid evolvement of pest resistance to Bt crops may

deprive the transgenic technology of all merits.
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Abstract—A mathematical model was constructed to describe the evolution of resistance to the Bacillus

thuringiensis toxin (Bt) in an insect pest (European corn borer) population on a transgenic crop (Bt corn).

The model comprises a set of partial differential equations of the reaction–diffusion type; local interactions

of three competing pest genotypes formed by alleles of Bt resistance and susceptibility are described as in

the Kostitzin model, and the spread of insects is modeled as diffusion. The model was used to evaluate the

influence of pest characteristics on the efficacy of the high-dose/refuge strategy aiming to prevent or delay

the spread of Bt resistance in pest populations. It was shown, by contrast, that a model based on

Fisher–Haldane–Wright equations and formally incorporating a diffusion term cannot adequately describe

the evolution of Bt resistance in a spatially inhomogeneous pest population. Further development of the pro-

posed demo-genetic model is discussed.
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The possibility of Bt-resistance development in

target pests is based on three points:

— insects are well known to become resistant to

insecticides, especially when the latter are applied

regularly and at high dosages [3];

— the relatively short life cycle of the pest (e.g.,

the commonly bivoltine ECB can have four genera-

tions per year for under favorable conditions [1])

speeds up the elimination of Bt-susceptible insects

and favors selection of Bt-resistant ones;

— some insect pest species have been reported

to develop Bt resistance in under laboratory condi-

tions [4–6].

The potential hazard of the evolvement of Bt re-

sistance has been discussed long before the appear-

ance of the first insecticidal crop. Comins [7] was the

first to theoretically demonstrate how random gene

exchange between two pest populations, one sub-

jected to insecticide treatment and the other not, can

retard the spread of resistance provided that the resis-

tance allele is recessive. He also formulated the two

basic concepts for the later design of a mechanism for

resistance management on transgenic crops [8, 9]:

— the incidence of the resistance gene in a

toxin-treated population can be attenuated through an

active influx of susceptible genes from non-treated

plots, which were later termed “refuge;”

— intense insecticidal treatment of crop fields

combined with allotment of refuges suppresses the

spread of resistance.

The evolution of a resistance gene in the genetic

structure of a population is a complicated transitional

nonequilibrium process influenced by many factors

(the dominance level and the initial frequency of the

resistance-conferring allele, the Bt efficiency, the in-

tensity of insect migration within and beyond the

toxic region, etc.). This process can be either very

fast, taking just a few generations, or conversely,

stretched over decades or even centuries, depending

on the combination of such factors. Hence, the prob-

lem cannot be fully assessed by lab tests or field tri-

als, and mathematical modeling remains one of the

main approaches to studying the spatiotemporal dy-

namics of agroecosystems comprising transgenic

crops and insect pests. In particular, mathematical

models are built to forecast the duration and rate of

Bt-resistance development in pest populations.

In the context of current simulation modeling,

the high-dose/refuge (HDR) concept is considered the

main strategy of resistance management in pests on

transgenic crops [10, 11]. “High dose” means that the

Bt toxin content in the GM plants must be so high that

only toxin-resistant insects can survive. In more exact

terms, the toxin concentration must be 25 times

higher than the one necessary to kill all susceptible

larvae [12]. The purpose of refuges—defined as plots

with any non-Bt plants that are hosts for target

pests—is to prevent or attenuate the undesirable effect

of the high dose by weakening the selection pressure

for resistance and thereby retard the resistance devel-

opment in the pest population.

Most of the mathematical models assume that Bt

resistance is controlled by a single diallelic locus,

whereby the susceptibility allele s and the resistance

allele r form three genotypes: homozygotes ss and rr,

and heterozygotes rs (sr). It is also assumed that the

Bt susceptibility of the rs and sr heterozygotes is the

same, i.e., the resistance gene is autosomally inher-

ited. Considering the genetic structure of the pest pop-

ulation subjected to selection for toxin resistance, the

efficiency of the HDR strategy is determined by three

main conditions [13]:

— the initial frequency of the resistance allele r

must be low enough so that only the rare rr individu-

als survive on the Bt crop;

— the resistance allele must be recessive so that

rs individuals prove fully or partly susceptible to the

toxin;

— the location and configuration of refuges

must be optimal for mating between rr insects arising

on the Bt field and ss insects from the refuge, so that

their heterozygous progeny lower the frequency of the

resistance allele in every next generation.

If all the three conditions are fulfilled, the devel-

opment of Bt resistance in pest populations can be de-

layed for an economically expedient length of time

[14–16]. Let us consider each condition as applied to

the modeled dynamics of ECB.

Initial r allele frequency. Resistance-conferring

genes may arise in natural insect populations owing to

recurrent mutations and may persist at a low fre-

quency prior to any toxin exposure [3]. The relative

scarcity of the Bt-resistance allele in natural ECB

populations is confirmed by several works [17, 18]; in
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general, this frequency does not exceed 10–3, which is

low enough for a HDR strategy to be efficient.

Inheritance of resistance. Whether the resis-

tance allele is recessive has not been verified by labo-

ratory analysis, though partial Bt resistance has been

reported to occur in natural ECB populations [17, 18].

On the other hand, resistance to a commercial formu-

lation of a Bt toxin in the laboratory [6] appeared to

be inherited as an incompletely dominant autosomal

gene; as far as we know, this has not been confirmed

by field trials.

Refuge. For successful resistance management,

the refuge must produce large numbers of susceptible

adult insects relative to the number of resistant ones

arising on transgenic fields. The proportion recom-

mended by US FIFRA [12] is 500:1. The refuge size

and arrangement relative to transgenic fields are deci-

sive for their efficacy; however, there is still no una-

nimity on this point.

AN OVERVIEW OF THE PROBLEMS

PERTAINING TO THE HIGH-DOSE/REFUGE

STRATEGY

Among the major crops, Bt maize is second to

Bt soybean; in 2004 it occupied 14% of the global

maize acreage (19.3 mln ha) [19]. Such broad distri-

bution and continual action of Bt toxins means

long-term strong selection pressure for resistance in

pest populations. In the USA, refuges for susceptible

pests are mandatory in Bt-maize growing since 1999

[9]. According to EPA recommendations, any host

plant can be used as refuge. However, despite the fact

that ECB is extremely polyphagous (host range of

more than 200), it does not fit into this general

scheme. Recent research in the USA [20] and North-

ern France [21–24] shows that the populations devel-

oping on other plants form races differing behavio-

rally and genetically from the maize populations;

hence only usual (non-Bt) maize can provide for nor-

mal refuge function.

Corn growers are instructed [9, 25] that the ref-

uge area may vary from 20 to 50% of the crop area

depending on the extent of infestation, and that the

refuge must be adjacent to the Bt field. They are addi-

tionally advised to spray large refuge areas with in-

secticide to improve the plant yield. The current rec-

ommendations are based on simulation modeling of

resistance evolvement in pest populations. According

to the results available, reduction of the refuge area

would accelerate both the extinction of insects and the

evolution of resistance [14, 15, 26]. Again, modeling

[27] indicates that even rare application of insecticide

on a 20% refuge promotes Bt resistance in an ECB

population, whereas on a 30% or larger refuge there is

practically no such effect. However, growers see no

economic interest in organizing refuges and tend to

ignore all and any recommendations because the crop

yield from refuges is generally lower [28, 29]. As al-

ready mentioned, the optimal size and configuration

of the refuge is a matter of debate.

After more than a decade, a number of key prob-

lems in implementing the HDR strategy remain un-

solved. How fast can Bt-crop resistance evolve? What

factors are decisive for this process? What is the size

of refuge that can retard Bt resistance? What refuge

configuration is optimal? Is it possible to completely

prevent Bt resistance? These and many other ques-

tions still have no definite answers. On the other

hand, though lab studies and some mathematical mod-

els support the ECB ability to fairly quickly acquire

resistance to Bt maize [6, 14, 15, 27], in reality the

field surveys since the first planting of Bt maize in

1996 have not detected a single homozygous Bt-resis-

tant moth [18]. The fact that the actual field data defy

the laboratory and theoretical forecasts is really strik-

ing and calls for novel approaches and models.

AN OVERVIEW OF MODELING METHODS

Modeling of the spread of a Bt resistance gene

in a pest population must take into account two main

components:

— the spatial inhomogeneity due to partitioning

of the pest habitat into plots with common and Bt

maize, and

— the genetic structure of the pest population

and its evolution.

The first component can be realized in a set of

partial differential equations of the reaction–diffusion

type, cellular automatons, or compartmental models

explicitly describing the gene flows in space.

The second component must include the key ele-

ments of the insect ecology and genetics. Some simu-

lation models are built with very detailed assumptions

on the population genetics and the life cycle of insect

species [14, 15, 26, 27, 30]. Alternatively, in the
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framework of a conceptual approach the authors dis-

regard the insect ecology and focus only on the ge-

netic processes described with the classical Fisher–

Haldane–Wright (FHW) equations [11, 16, 31, 32].

This conceptual approach encounters at least two

problems comprehensively considered elsewhere

[33].

The matter is that the FHW design initially per-

tained to species whose life cycle is an alternation of

nonoverlapping diploid and haploid generations (see

[33]). In this case, to describe the genetic structure of

the entire population it is sufficient to use equations

derived for one of the phases; as the description at the

haploid (allele) level is simpler, instead of the dynam-

ics of genotype frequencies one can consider the dy-

namics of allele frequencies. This circumstance hin-

ders the application of the FHW equations to the

evolvement of Bt resistance in insects (such as ECB)

for which the diplophase is the main and the longest

form of vital activity, while the haplophase is signifi-

cantly reduced and devoid of ecological autonomy

(i.e., boils down to the existence of gametes).

Expansion of the FHW applicability is based on

an auxiliary hypothesis of a “gamete pool” whereby

the mating of diploid organisms with ensuing copula-

tion of gametes (haploid forms) for a separate parent

pair is equivalent to panmictic copulation of gametes.

In other words, it is assumed that all gametes make an

ecologically independent pool [33]; this admits the

term “gametic population.” Panmixia of diploid or-

ganisms immediately after the first generation estab-

lishes the Hardy–Weinberg (HW) equilibrium be-

tween the genotype and allele frequencies, which

holds in further generations.

Note that the “gamete pool” hypothesis also

draws in additional assumptions concerning the pest:

(i) large population size, (ii) sexual reproduction, (iii)

lack of mutations, (iv) lack of selection, (v) lack of

migration. In reality, only points (i) and (ii) are true

for ECB and many other insect pests. Point (iii) may

be sometimes accepted for such populations, but

points (iv) and (v) contradict both the properties of

the species under study and the nature of the a priori

nonequilibrium transitional process of the evolvement

and spread of resistance in the pest population. Thus,

neither the “gamete pool” hypothesis nor the HWE

assumption appear to be adequate to the case.

As far back as 1937, the limited applicability of

the conventional population genetics was pointed out

by Kostitzin [34]. He noted that in a diploid popula-

tion the selection operates through genotype competi-

tion at the level of densities rather than allele frequen-

cies (see also [33]). Nonetheless, FHW and HW rela-

tionships are still broadly used to model Bt resistance

in insect populations [11,14–16, 27, 30–32]. To ac-

count for spatial inhomogeneity of pest distribution,

such models include diffusion terms [16, 31] or mi-

gration of a fixed portion of individuals from each

cell in a cellular automaton [32]. However, the above

reasoning makes one doubt that the diffusion version

of Fisherian equations can adequately describe the

real process or that a pointwise (panmictic) FHW-

based model can correctly predict the delay in pest re-

sistance development (see [11]). Indeed, the estimates

thus obtained are pessimistic and thus far not con-

firmed by practice. Thus only a 10-year delay is pre-

dicted even with quite a large (26%) refuge (see, e.g.,

[16]); note that according to the current standards an

acceptable resistance management strategy must sus-

tain the Bt crop efficacy for more than 10 years [12].

Onstad [35] stated that for an ecological model

to be realistic it should use all the available informa-

tion on the object under study. This approach is repre-

sented by the maximally detailed simulation models

of the evolution of Bt resistance in pest populations

[14, 26, 27, 30]. Their predictions appear to be closer

to reality: a 56-year delay with a 10% refuge and over

100 years with a more than 20% refuge [14, 27]. An-

other simulation model [15] gives a delay of 80 gen-

erations with a 10% refuge, which makes 40 years for

bivoltine ECB, or less for a multivoltine pest; by con-

trast to the FHW approach, this model also supports

the expedience of the HDR strategy.

On the other hand, the practical use of simula-

tion models is hindered by their complexity and the

vast number of parameters [36], many of which are

very difficult or impossible to determine from avail-

able data. In some cases, the detailing becomes ab-

surd, e.g., a model is praised for including 17 600

equations with 41 000 coefficients [35]. This greatly

limits the value of simulation models in agroeco-

logical studies and management.

Hence there is need for modified conceptual models

that would adequately describe the systems dynamics,

accounting not only for genetic transformations but

also for ecological interrelationships between insect

pests and host plants.
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To describe the spatiotemporal dynamics of a

pest in a spatially inhomogeneous habitat, we propose

a conceptual demo-genetic reaction–diffusion model,

whereby the local kinetics of competing genotypes is

set by a modified Kostitzin model ([34], see also [33,

37]). This approach is alternative to the use of the

conventional equations of population genetics and ob-

viates the problems unsolvable by the latter. It allows

explicit modeling of the evolution of a resistance-con-

ferring allele in a population with nonoverlapping

generations and reduced haplophase, adequately de-

scribing the selection for resistance both close to and

far from HW equilibrium [37]. In addition, the model

can account for the influence of the plant resource on

the pest dynamics; this interaction is described by a

Lotka–Volterra predator-prey model..

Here, we consider ECB on Bt maize as an exam-

ple and assess the influence of spatial factors such as

pest mobility and refuge size on the efficacy of the

HDR strategy of resistance management.

THE MODEL

Population Genetics

As in most of the relevant models [8, 14–16, 30,

32], we assume that the individual resistance to a Bt

crop in a pest population is determined by a single lo-

cus of two alleles: susceptible (s) and resistance-con-

ferring (r), which form three genotypes: resistant ho-

mozygous (rr) and susceptible homo- and heterozy-

gous (ss, rs). We also assume that locally (i.e., at any

space point) the genotypes cross at random. By con-

trast to the conventional approach, we do not follow

the HW principle in determining the gene frequencies

in the pest population.

Modeling the Population Dynamics

With the given premises on pest genetics and de-

mography, the model appears as

∂
∂

= +
∂
∂

+
∂
∂







N

t
F N N N

N

x

N

y

ss
ss ss rs rr ss

ss ss
( ), , δ

2

2

2

2
,

∂
∂

= +
∂
∂

+
∂
∂







N

t
F N N N

N

x

N

y

rs
rs ss rs rr rs

rs rs
( ), , δ

2

2

2

2
, (1)

∂
∂

= +
∂
∂

+
∂
∂







N

t
F N N N

N

x

N

y

rr
rr ss rs rr rr

rr rr
( ), , δ

2

2

2

2
,
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Here Nij = Nij(x,y,t) are the densities of the re-

spective genotypes in point (x,y) at moment t; N = Nss

+ Nrs + Nrr is the overall population density. It is as-

sumed that all genotypes have the same fertility coef-

ficient (b) but may have different mortality (µ), com-

petition (α), diffusion (δ), and fitness coefficients

(W); the latter can also be interpreted as survival of

larvae of the corresponding genotype depending on

localization in the habitat (usual or Bt maize).

The diffusion coefficients characterize the inten-

sity of nondirectional movements of individuals. We

assume that there are no diffusional density fluxes

across the boundary, i.e.,

∂

∂
=

∂

∂
=

N

x

N

y

ij ij
0 (3)

at the borders of the entire model field.

Thus, the nonlinear demo-genetic model (1)–(3)

is based on the well-known Lotka–Volterra competi-

tion equations. Being autonomous, this model does

not account for seasonal variations in the environmen-

tal conditions and should be regarded as a first ap-

proximation of the real agroecosystems. We do not

model the different stages of ECB ontogeny, and as-

sume the reproduction/mortality processes to be con-

tinuous.

Note that model (1)–(3) implies that each geno-

typic group is represented by both males and females.

The functions of genotype reproduction bracketed in

set (2) imply Mendelian inheritance and a constant

1:1 sex ratio in the population. Also note that
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demographic processes and spatial movement of the

pest take place on the same spatiotemporal scale,

while short-range motion of adult individuals is ig-

nored.

When Wij = 1, i.e., the whole pest habitat is a

refuge, and the genotypes are distributed uniformly,

model (1)–(3) is a particular case of the Kostitzin

demo-genetic model ([34], see also [37]).

Modeling the High-Dose/Refuge Strategy

To account for spatial inhomogeneity, we as-

sume that the pest habitat is a rectangle Ω = [0,Lx] ×
[0,Ly] composed of an arbitrary number of plots with

either Bt maize (further denoted ΩBt) or usual maize

(refuge, ΩRef).

Like other authors [16, 31], we assume that in

the general case the fitnesses of susceptible ECB ge-

notypes on these plots can differ:
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where s is the selection coefficient for Bt-resistance, c

is the cost paid by the resistant genotype for the ad-

vantage on transgenic plots, hs is the dominance level

of the selection, h c is the level of dominance of the

cost; s, c, hs, hc ∈[0;1].

In a particular case when the selection intensity

on Bt plots is maximal (i.e., 100% of susceptible indi-

viduals are killed) and the resistance gene is recessive

(i.e., all heterozygous individuals are also killed),

s = 1, hs = 1. Further assuming that there is no cost for

resistance, the fitnesses of rs and ss genotypes on ΩBt

become zero, i.e., the Bt-susceptible progeny does not

survive on Bt maize, while the resistant rr individuals

have maximal fitness Wrr = 1 both on Bt plots and in

the refuge:

Wrr ≡ 1, ∀ (x, y)
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This is an extreme case. Here, following the

conclusions [18] about the partial survival of hetero-

zygous ECB on transgenic maize plots and about the

lack of pronounced resistance cost, we take the pa-

rameters used elsewhere [16]: s = 1, c = 0, hs = 0.95.

Thus, the difference between the transgenic and

the refuge plots is determined only by the different

survival of the pest larvae in accordance with condi-

tions (4). Note that the interfaces between adjacent

ΩBt and ΩRef are transparent, the boundary conditions

(3) apply only to the outer borders of the habitat.

Ecological Simplifications in Model (1)–(3)

To better understand the influence of the HDR

strategy on the evolution of Bt resistance in the pest

population, let us assume that the ecological charac-

teristics of all pest genotypes are identical: αss = αrs =

= αrr = α, µss = µrs = µrr = µ, δss = δrs = δrr = δ; i.e.,

genotypes differ only in their ability to survive on Bt

maize. Thereby the set (1)–(2) becomes
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Note that in a non-spatial (point) case with

Wij = 1, i.e., when the whole pest habitat is a refuge,

summation of equations (6) yields a simple logistic

equation for the overall population growth:
dN

dt
bN N N= − −µ α 2 where N = Nss + Nrs + Nrr, b

and µ are birth and natural mortality constants, re-

spectively. At b > µ, the relationship K = (b – µ)/α
gives the ‘carrying capacity’ for the pest population.
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Though here we consider only the b > µ case,

note that in the opposite case the ‘carrying capacity’

should be understood not as K (which becomes nega-

tive and corresponds to an unstable equilibrium of the

logistic equation) but rather as the zero equilibrium of

the model becoming stable at b < µ (see also [38]).

Translation from the Density

to the Frequency Form

Unlike the models based on formally adding the

diffusion of the Bt-resistance frequency to the classi-

cal FHW equations, the demo-genetic model (6),(3)

explicitly describes the spatial transfer and interaction

of population densities of ECB genotypes. Translation

of this model into allele frequencies makes it easier to

see the relationships between the two approaches.

To simplify the subsequent mathematical deriva-

tion, let us consider a 1D case of model (6),(3) corre-

sponding to a single-strip template shown in Fig. 1. If

in this configuration all genotypes at the initial mo-

ment are homogeneously distributed with respect to

the Ly direction, there are no density fluxes along this

side, the dynamics of the system does not depend on

the Ly size and is fully described by a 1D model.

As above, we take that pest genotypes differ

from one another only by their survival on Bt maize.

Summing all equations (6) and denoting the fre-

quency of each genotype as u x t
N x t

N x t
ij

ij
( , )

( , )

( , )
= , we

obtain an equation for the dynamics of the overall

population density N:

∂
∂

= − + +
∂
∂

N

t
N bW N

N

x
( ( ))µ α δ

2

2
, (8)

where

W u u u W u
u

ss rs rr ss ss
rs

( ), , = +





+
2

2

+ +





+





+2
2 2

W u
u u

urs ss
rs rs

rr (9)

+ +





W
u

urr
rs

rr
2

2

.

Let us proceed to the frequency form in set (6).

To this end, we express the density of each genotype

through its frequency and the overall density, Nij =

= uijN. Then the reproduction/mortality functions (7)

can be written as

F u u u W bN u
u

ss ss rs rr ss ss
rs

( ), , = +













 −

2

2

− −α µu N u Nss ss
2 ;

F u u u W bN u
u u

urs ss rs rr rs ss
rs rs

rr( ), , = +





+





2
2 2








−

− −α µu N u Nrs rs
2 ;

F u u u W bN
u

urr ss rs rr rr
rs

rr( ), , = +













 −

2

2

− −α µu N u Nrr rr
2 . (10)

Denote the reproduction functions as fij:

f u u u W bN u
u

ss ss rs rr ss ss
rs

( ), , = +















2

2

;

f u u u W bN u
u u

urs ss rs rr rs ss
rs rs

rr( ), , = +





+





2
2 2








;

f u u u W bN
u

urr ss rs rr rr
rs

rr( ), , = +















2

2

. (11)

Then the functions of local kinetics (10) appear

as

F u u u f u N u Nss ss rs rr ij ij ij( ), , = − −α µ2 ; (12)

and the initial model can be written in terms of geno-

type frequencies uij(x,t) and overall pest density N:

∂

∂
= − +

∂

∂
+

∂

∂
∂
∂









 ≡

u

t N
f u bW

u

x N

u

x

N

x

ij

ij ij

ij ij1
2

12

2
δ

≡ − +
∂

∂
+

∂

∂
∂

∂











1
2

12

2N
f u bW

u

x N

u

x

N

x
ij ij

ij ijδ
ln

, (13)
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Fig. 1. (a) Single-strip template of rectangular field used

in numerical experiments and (b) its 1D simplification

without fluxes of pest genotype density along Ly.



where ussj + urs + urr = 1.

Now we proceed from (13) to allele frequencies

p u ur rr rs= +
1

2
; p u us ss rs= +

1

2
. Since pr + ps = 1, it

is sufficient to consider the equation for the resistance

allele

∂
∂

=
∂
∂

+
∂
∂

= +





−
p

t

u

t

u

t N
f f

r rr rs
rr rs

1

2

1 1

2

− +
∂
∂

+
∂
∂

∂
∂







p bW
p

x

p

x

N

x
r

r rδ
2

2
2

ln
. (14)

Taking into account

 as well as equation (8), we obtain

∂
∂

= − +
∂
∂

+
∂

∂
∂
∂

p

t
bp W W

p

x

N

x

p

x

r
r r

r r
( )

ln
δ δ

2

2
2 ;

∂
∂

= − + +
∂
∂

N

t
N bW N

N

x
( ( ))µ α δ

2

2
; (15)

p ps r+ = 1,

where Wr = Wssps + Wrrpr is the mean fitness of the re-

sistance allele. The W value can be interpreted as the

mean fitness of the entire population and expressed

in allele frequencies as W W p W p pss s rs s r= +2 2 +

W prr r
2 .

The set (15) with boundary conditions

∂
∂

=
∂
∂

=
p

t

N

t

r
0 (16)

completely describes the evolution of the frequency

of the Bt resistance allele and the dynamics of the

overall pest numbers. This model is distinguished

from the classical equations of population genetics

with diffusion (a spatial FHW model) [16, 31, 32] by

the presence of the term 2δ
∂

∂
∂
∂

lnN

x

p

x

r
, which affects

the spatial distribution of the resistance allele and can

be interpreted as an ‘advective’ term describing the

directed flow of allele frequency pr at a rate

−
∂

∂
2δ

ln N

x
along spatial coordinate x. Such advection

arises from the inhomogeneity of the spatial distribu-

tion of N and pr, disappearing if any of the latter is

distributed uniformly.

It must be emphasized that in the general case

the system (15) does not necessarily evolve at the HW

equilibrium: u pss s
* = 2 . u p prs s r

* = 2 , u prr r
* = 2 . Intro-

ducing an additional variable

ξ = −u u
u

ss rr
rs
2

4
, (17)

that gives the deviation from HWE (see [37]) and ex-

pressing genotype frequencies as u pss s= +2 ξ,

u p prs s r= −2 2ξ, u prr r= +2 ξ, we obtain a differen-

tial equation for the spatiotemporal dynamics of ξ:

∂
∂

= + − +
∂
∂

+
ξ

ξ δ
ξ

t
b p p W W W W

x
s r ss rr rs( ( ) )2 2

2

2
2

+
∂
∂

∂
∂

+
∂
∂







2 2

2

δ
ξ

δ
x

N

x

p

x

rln
. (18)

The deviation tends to zero (i.e., the system

tends to HWE) only if one of the allele frequencies

tends to zero. Otherwise, a polymorphic system with

Wrs exceeding Wss and Wrr evolves beyond HWE;

moreover, ξ increases owing to the inhomogeneity of

the spatial distribution of allele frequencies.

A TWO-LEVEL DEMO-GENETIC MODEL

“PLANT RESOURCE—PEST”

Model (6),(3) as well as its equivalent (15),(16), al-

lows one to solve purposeful problems related to effi-

cient and long-term pest control. Account of the

spatiotemporal dynamics of the plant resource ex-

pands the applicability of the model and brings it

closer to real agroecosystems.

Let the plant (maize) mass increment R = R(x,t)

in point x at time t obey the logistic law. Also let the

consumption of the biomass by the pest (ECB) be de-

scribed by a trophic function g(R) defining the indi-

vidual rations. In the simplest case, g(R) = aR is the

Lotka–Volterra linear trophic function. Considering

the genetic heterogeneity of the ECB population aris-

ing through selection pressure for Bt resistance as

well as the possibility of active diffusional move-

ments of the pest within the 1D habitat, we obtain a

two-level demo-genetic model describing the dy-

namic processes of resource–pest interactions:

∂
∂

= − −
R

t
r R R K aRNR R( )1 ;

∂

∂
= − +

∂

∂

N

t
eaRf N

N

x

ij

ij ij

ijµ δ
2

2
, (19)

where N N ij= ∑ ; rR is the Maltusian coefficient for

plant mass increment, KR is the ‘carrying capacity’ in

respect of the plant resource, a is the coefficient of

feed searching efficacy, e is the coefficient of pest
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conversion efficacy; fij sets the proportions of progeny

distribution over the three genotypes and the survival

of larvae depending on the spatial localization, as

above in model (1)–(3):

f N N N W
N

N
N

ij ss rs rr ss ss
rs

( ), , = +















1

2

2

f N N N W
N

N
N N

Nrs ss rs rr rs ss
rs rs

rr( ), , = +





+





2

2 2








f N N N W
N

N
Nrr ss rs rr rr

rs
rr( ), , = +















1

2

2

. (20)

The other parameters and variables in (19) are

similar to those in (1)–(3).

In the frequency form, we get

∂
∂

= − −
R

t
r R R K aRNR R( )1 ;

∂
∂

= − +
∂
∂

+
∂

∂
∂
∂

p

t
eaRp W W

p

x

N

x

p

x

r
r r

r r
( )

ln
δ δ

2

2
2 ;

∂
∂

= − +
∂
∂

N

t
N eaRW

N

x
( )µ δ

2

2
; p ps r+ = 1,

W W p W pr rs s rr r= +

W W p W p pss s rs s r= + +2 2 W pss r
2 .

Note that the local kinetics term in the balance

equation for the allele frequency pr differs from the

continuous FHW form in that the pest fertility coeffi-

cient is not constant but depends on the individual ra-

tions g(R) = aR, increasing with the resource density

as specified by the Lotka–Volterra trophic function. In the

absence of feed, the pest does not propagate, and the lo-

cal variations in pr are caused solely by spatial flows.

As in model (1)–(3), besides diffusion here we

have directed pr fluxes at the advection rate −
∂

∂
2δ

ln N

x

due to spatial inhomogeneity of pest density and al-

lele frequency.

NUMERICAL EXPERIMENTS

Model Parameter Estimation

In simulations, we used the estimates of the

ECB biological characteristics provided by Onstad et

al. [27]. The time unit was year (365 days); the space

unit, kilometer. The pest was taken to be bivoltine:

two generations (from the egg to the winged imago)

take one year, the second generation takes the larger

part as it includes the winter diapause in the larval

stage.

One ECB female on average lays 288 eggs

through its lifespan [27]. To determine the fertility co-

efficient b for equivalent models (6),(3) and (15),(16),

we use b =
1

τ
λln where λ is the fertility coefficient in

discrete time, τ is the lifespan. The mean annual fer-

tility of ECB is obtained as the weighted sum

b b b= +1 1 2 2τ τ , (22)

where subscripts pertain to the two generations. Then

b = 2lnλ. Taking the portion of females in the popula-

tion to be 0.5 so that λ = 144, we get b ≈ 9.94 yr–1.

Likewise, we determine the mean annual mortal-

ity coefficient µ as the weighted sum for the two gen-

erations:

µ µ τ µ τ= +1 1 2 2 . (23)

The µ1 and µ2 components are estimated assum-

ing that the decline in population density over a cer-

tain period τ obeys the exponential law:

N

N

i
i i

( )

( )
exp( )

τ
µ τ

0
= − , i = 1, 2. (24)

where N(0) is the pest number at the beginning of the

ith period. Knowing the natural survival of the pest

[27] in summer (0.077 for larvae of either generation)

and in diapause (0.18), we calculate µ
τ1

1

0 077
= −

ln( . )

and µ
τ2

2

0 077 018
= −

⋅ln( . . )
. Note that, as in the cited

work [27], we disregard the mortality of the egg and

adult stages, assuming 100% survival. Thus,

µ = 6.84 yr–1.

From the same source [27] we take the maximal

number of 22 larvae per plant and the density of

67 000 plants per hectare, which yields a carrying ca-

pacity K = 147.4⋅106 larvae per square kilometer.

Hence the mean annual competition coefficient is ob-

tained as α = (b – µ)/K = 2.1⋅10–8 km2 yr–1 per indi-

vidual.

For the two-level resource–pest model (19) we

additionally estimated the biomass increment coeffi-

cient rR, assuming for maize a mass doubling time of

10 days: rR =
365

10
2ln = 25.3 yr–1, which agrees with

the generalized literature data on the growth of dry
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above-ground plant mass and the average values ob-

served for cereals [39].

As in the arid zone with irrigation the yield

of dry above-ground mass for maize may exceed

400 q/ha (quintal of 100 kg) [39], we assumed a max-

imum of 500 q/ha. In the chosen units of measure-

ment, the carrying capacity in the plant resource is

KR = 5⋅104 q km–2.

Other model parameters were selected so that

the equilibrium plant resource would be 60% of the

capacity, R* = 0.6 KR.

The complete development of ECB larvae takes

about one month. In this time the larvae can eat

10 times the pupal weight (ca. 5 g), i.e., nearly 50 g. 

Hence the pest conversion efficacy coefficient can be

estimated at e = 5 q–1.

The searching efficacy coefficient a will be cho-

sen so as to allow collation of models (6),(3) and

(19),(3); namely, in (19),(3) the pest increment eaR at

functions fij in the pest density equation should corre-

spond to the fertility coefficient b in (6),(3). With R*

= 0.6KR, we get b = eaR* = 0.6eaKR or a
b

eK R

= =
0 6.

9 94

0 6 5 5 10 4

.

. ⋅ ⋅ ⋅
= 66.27⋅10–6 km2 yr–1.

As the diffusion coefficient δ is difficult to esti-

mate from field data, it was varied in simulations.

Simulation Scenario

For numerical experiments, the initial continu-

ous models (6) and (19) with boundary conditions (3)

were discretized in space using a uniform grid, in

each node of which the spatial derivatives were ap-

proximated with central differences. The resulting set

of ordinary differential equations at given initial con-

ditions was numerically integrated using a fourth-or-

der Runge–Kutta procedure with automatic time step-

ping. The space step was chosen to trade off between

minimal error and maximal speed of calculation. As a

result, we used 100 nodes for a typical cornfield size

of 40 km (fixed in all experiments), i.e., a space step

of 400 m, while the time step was automatically var-

ied from a day to a fortnight. The stability of the pro-

cedure was checked by calculations with a doubled

space grid.

It was assumed that at the initial moment, i.e., at

planting maize Bt hybrids, there are no resistant

homozygotes (rr) in the field, while a low frequency

of the Bt-resistance allele is maintained in the modest

number of heterozygous individuals (rs). This as-

sumption is fully consistent with the field studies on

natural ECB populations [17, 18]. The initial pest ge-

notype frequencies (insects per square kilometer)

were taken to be N0
ss = 367 400, N0

rs = 1100 (0.3% of

the total density), N0
rr = 0; the total N0 = 368 500 was

0.25% of the carrying capacity K. Individuals of each

genotype were initially homogeneously distributed

through space; thereby the initial frequency of the r

al le le in the pest populat ion was

p
N N

N
r

rr rs0
0 0

0

0 5
0 0015=

+
=

.
. , which slightly exceeded 

the value (< 10–3) reported for natural ECB populations 

[17, 18].

For the resource–pest model, the initial density of

the plant dry mass was taken to be R0 = 1500 q km–2,

also assuming uniform space distribution.

Delay of Bt Resistance in the Pest Population

To recall, the “high dose” defined as the one

killing 100% of susceptible homozygotes and 95% of

heterozygotes (s = 1, hs = 0.95), and no cost was put

on resistance (c = 0). Thus the fitness (survival) of the

three ECB genotypes is set as follows:

Wrr ≡ 1, ∀(x, y) ∈ Ω;

W x y
x y

x y
rs ( , )

, ( , ) ;

. , ( , )
=

∈
∈





1

0 05

Ω
Ω
Ref

Bt

(25)

W x y
x y

x y
ss ( , )

, ( , ) ;

, ( , )
=

∈
∈





1

0

Ω
Ω

Ref

Bt

The refuge is at the left of the cornfield (Fig. 1).

At a fixed refuge size (20% of the total area) and

a fixed diffusion coefficient δ = 8 km2 yr–1, simula-

tions in model (6),(3) show that from the moment of

implementing the HDR strategy the initially homoge-

neous distribution of genotype densities loses stabil-

ity, and in three years a spatially nonuniform regime

is established in the field (fig. 2a) where the overall

pest density in the refuge is somewhat less than the

carrying capacity while in the Bt region there is prac-

tically no infestation. Note that all over the field the

population is represented mainly by the ss genotype

(no less than 99%). At the given parameter values,

this regime persists for nearly 500 yr. Nonetheless,

despite the intense influx of Bt-susceptible insects

from the refuge, the rr genotype has essential advan-

tage on the Bt area, and since the establishment of
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spatial inhomogeneity (Fig. 2a) its density (as well as

the frequency of the resistance allele) rises very

slowly but invariably. Thus the system develops to-

wards another spatially homogeneous state whereby

the rr genotype overwhelms the susceptible ss and rs

throughout the habitat (Fig. 2d). It is noteworthy that

after the resistance gene frequency reaches a certain

critical level (pr ≈ 10%), it takes only 5 yr for the rr

genotype to spread over the whole Bt field (Fig. 2b,c)

and about 50 yr to completely displace ss and rs from

the refuge (Fig. 2c,d).

Without a cost for resistance, the spatially uni-

form distribution Nss(x) = Nrs(x) = 0, Nrr(x) = K,

∀x ∈ Ω is the only stable steady state of model (6),(3).

We then evaluated the time T(pr < 0.1) in which

the frequency of the Bt-resistance allele in the ECB

population reaches 10% in model (6),(3) at different

pest mobilities and refuge sizes (Table 1). Both at low

mobility (δ ≤ 0.1 km2 yr–1) and at complete mixing

between the transgenic and the refuge areas (δ = ∞),

T(pr < 0.1) smoothly depends on the refuge size, but

there is no essential delay in any case: resistance de-

velops in less than 25 yr. At intermediate mobility

(δ = 1÷10 km2 yr–1) the model forecasts dramatic

‘jumps’ in the delay T(pr < 0.1) with refuge size vari-

ation (however, the monotonic dependence holds at

any δ). This estimated delay time amounts to centu-

ries and even millennia (Table 1), corroborating the

expedience of the HDR strategy. High pest mobility

(δ = 10÷150 km2 yr–1) smoothes out the delay vs. ref-

uge size dependence. Viewed otherwise, Table 1

makes evident that increasing pest mobility at any

fixed refuge size first causes a jump in the delay time

and then a gradual decline.

For comparison, we performed the same compu-

tations at the same parameters in the conventional fre-

quency-based approach (a FHW diffusional version,

Table 2). One can see that throughout the δ variation

range the time T(pr < 0.1) monotonically increases

with the refuge size. On the other hand, increasing

pest mobility at modest refuge size (5–20%) mono-

tonically shortens the delay, whereas with larger ref-

uges the monotony is broken: the delay time first de-

clines with increasing mobility and then tends to rise

again. However, all the T(pr < 0.1) values thus ob-

tained are too low to support this resistance manage-

ment strategy: mostly less than 10 yr, and within

25 yr at any combinations.

Explicit Account of the Plant Resource

in the Demo-genetic Model

To assess the influence of the plant resource, we

compared the delays predicted by our two-level
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Fig. 2. ECB genotype density distributions (solid line, rr;

dashed line, ss; point line, rs) over a 1D model field of

Lx = 40 km with a 20% refuge at the left (Fig. 1) at indi-

cated times t (years) after planting as predicted by the

demo-genetic model (6),(3) assuming pest mobility

δ = 8 km2 yr–1.



demo-genetic model (19),(3) and a bitrophic FHW

diffusional model (corresponding to (21),(16) less the

advective term 2δ
∂

∂
∂
∂

ln N

x

p

x

r
, see above) with 10% or

20% refuge. Just as in simulations without the re-

source, the demo-genetic model predicts far longer

times to Bt resistance than the FHW version, as well

as a dramatic jump of T(pr < 0.1) followed by a de-

cline with increasing pest mobility δ (Fig. 3). For

complete mixing between the Bt and refuge areas, the

two models give a similar outcome: quite quick

(within 10 yr) spreading of the rr genotype in the pest

population (not shown).

DISCUSSION

Here we have demonstrated that formal addition

of a diffusion term into a FHW model may lead to se-

rious errors in forecasting the evolution of the genetic

structure of a spatially distributed population. The ori-

gin of this fallacy is clear. The FHW concept initially

concerned species with an ecologically autonomous

haplophase [33]. Application of such a model to pop-

ulation dynamics of diploid organisms implies a num-

ber of auxiliary conditions that would ensure panmi-

ctic reproduction, specifically, uniform spatial distri-

bution of the population and absence of density

fluxes. Nonetheless, the approach relying on FHW

diffusional models remains quite popular, and it has

been used to describe the spatiotemporal dynamics of

the resistance allele in ECB populations [11, 14–16,

27, 30–32].

An alternative is the demo-genetic approach put

forward by V.A. Kostitzin (1883–1963), a disciple of

V.I. Vernadsky and an outstanding Russian mathema-

tician, astrophysicist, and biophysicist. He was the

first to recognize that the competition theory devel-

oped by Volterra for interaction between species can
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Table 1. The time T(pr < 0.1) (years) in which the frequency of the resistance allele in the pest population

reaches 10% as predicted by the demo-genetic model (6),(3) at different refuge sizes and pest mobilities

Diffusion

coefficient (δ)

 
Refuge size, % 

�km
2 
�yr

-1
  0

5 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 

6
101

−
⋅  0  0 12 0 19 0 21 0 24 0 24 0 25 0 25 0 25 0 25 0 25 

5
101

−
⋅   11 13 14 16 17 19 19 21 22 24 

4
101

−
⋅   11 12 13 14 15 16 17 19 19 21 

0.01  12 12 13 13 14 14 14 15 15 16 

0.1  24 25 25 25 25 25 25 25 25 25 

1  25 25 25 25 25 26 26 27 2482 3012 

2  25 25 26 723 993 1293 1621 1978 2360 2768 

3  95 270 478 708 959 1229 1519 1828 2155 2499 

4  85 250 451 668 902 1150 1412 1689 1980 2283 

5  77 230 421 627 846 1076 1318 1572 1836 2111 

6  70 212 393 589 795 1012 1238 1473 1717 1970 

7  64 196 368 554 751 955 1168 1389 1617 1853 

8  59 182 345 524 711 906 1107 1316 1531 1753 

9  55 170 325 496 676 862 1054 1253 1457 1667 

10  52 159 307 472 644 823 1007 1197 1391 1591 

50  15 47 97 161 236 318 404 490 578 666 

100  11 26 54 89 132 181 235 292 351 412 

150  9 19 37 63 93 128 167 210 255 302 

…  … … … … … … … … … … 

∞  7 7 8 8 9 9 10 11 12 13 

 

 



also be applied to interaction between genotypes in a

diploid population [34]. This approach allows explicit

description of the evolutionary selection of the fittest

genotype as an immediate result of intraspecies com-

petition. Regretfully, Kostizin’s works (which were

highly commended by Volterra, see preface in [34])

and particularly his criticism of the unjustified used of

Fisherian frequency models, are now known unto few

[40, 41], though in Russia his demo-genetic approach

was furthered by some authors [33, 37].

By contrast to the FHW-based frequency mod-

els, the Kostitzin model describes the population dy-

namics at the level of genotype densities and thus can

most naturally be used in spatial reaction–diffusion

modeling. We hope that this circumstance will attract

the attention of researchers, which should be spurred

by the currently growing interest in studies on spa-

tially distributed ecosystems.

Local interaction of pest genotypes in the demo-

genetic model (6),(3) is described by Kostitzin equa-

tions that are somewhat modified according to the

specific features of the modeled system; namely, ge-

notype fitness is considered here in terms of larvae

survival coefficients instead of genotype fertility.

It should once again be stressed that the use of

differential equations makes model (6),(3) a continu-

ous approximation of the processes of pest reproduc-

tion and succession of generations, which under

clearly seasonal conditions are actually discrete rather

than continuous. However, since the model is in-

tended exclusively for long-term forecasting, its con-

tinuity is a natural simplification that should be taken

into account when interpreting the results.

An accurate translation of the initial density

form (6),(3) into the frequency form (15),(16) reveals

its basic distinction from the diffusional version of the
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Table 2. The time T(pr < 0.1) (years) in which the frequency of the resistance allele in the pest population

reaches 10% as predicted by a FHW-based diffusional model at different refuge sizes and pest mobilities

Diffusion

coefficient (δ)

 
Refuge size, % 

km
2
yr

-1
  5 10 15 20 25 30 35 40 45 50 

6
101

−
⋅   12 14 15 18 19 21 22 24 25 25 

5
101

−
⋅   11 13 14 16 17 19 19 21 22 24 

4
101

−
⋅   10 11 12 14 15 16 17 18 19 20 

0.01  9 10 10 10 11 11 12 12 12 13 

0.1  9 9 9 10 10 10 10 10 10 11 

1  8 9 9 9 9 9 9 9 9 9 

2  8 8 9 9 9 9 9 9 9 9 

3  8 8 9 9 9 9 9 9 9 9 

4  8 8 9 9 9 9 9 9 9 9 

5  8 8 8 9 9 9 9 9 9 9 

6  8 8 8 9 9 9 9 9 9 9 

7  8 8 8 9 9 9 9 9 9 9 

8  8 8 8 8 9 9 9 9 9 9 

9  8 8 8 8 9 9 9 9 9 9 

10  8 8 8 8 9 9 9 9 9 9 

50  7 8 8 8 8 8 9 9 9 9 

100  7 7 8 8 8 9 9 9 10 10 

150  7 7 8 8 8 9 9 9 10 11 

…  … … … … … … … … … … 

∞  7 7 8 8 9 9 10 11 12 13 

 



FHW model: along with the diffusive propagation of

allele frequency, the demo-genetic model considers a

directed gene flux induced by the inhomogeneity of

the pest density distribution. This means that a FHW

diffusional model would adequately describe the spa-

tial spread of the resistance gene only if the overall

density N is uniformly distributed throughout the en-

tire model field Ω.

How large can be the influence of the advective

term 2δ
∂

∂
∂
∂

ln N

x

p

x

r
in (15) becomes obvious upon

comparison of the results obtained with the two mod-

els (cf. Tables 1 and 2). With various combinations of

the refuge size and pest mobility, the HDR strategy

modeled by (6),(3) can delay the spread of resistance

by hundreds and even thousands of years

(Table 1)—an effect not nearly attainable with the

FHW version (Table 2). The delays predicted by the

demo-genetic model can easily explain why, despite

the broad cultivation of transgenic maize over a de-

cade, no Bt-resistant homozygous ECB has yet been

detected.

Thus, our quite simple demo-genetic model, un-

like FHW, can reproduce and substantiate the efficacy

of the refuge in retarding the evolvement of pest resis-

tance to the Bt crop.

The success of the HDR strategy is determined

not just by the existence of a refuge for susceptible in-

sects but by the intensity of their flux from the refuge

onto the Bt field, which provides for mating between

Bt-resistant insects migrating from the Bt field and

the susceptible insects from the refuge, thereby lower-

ing the frequency of the resistance allele in every next

generation. It is this flux that allows the system (6),(3)

to persist for a long time in the vicinity of an unstable

spatially inhomogeneous steady state corresponding

to the absence of rr and rs genotypes (Fig. 2a) before

transition to a stable homogeneous steady state Nss(x)

= Nrs(x) = 0, Nrr(x) = K (Fig. 2d). It is important that

over this time throughout the field the spatial gradi-

ents of overall density N(x) and resistance gene fre-

quency pr(x) are opposite, so the advective flux coun-

teracts the rise in pr(x) because 2 0δ
∂

∂
∂
∂

<
ln N

x

p

x

r
. As

the ecological characteristics of all ECB genotypes

are identical, in the refuge proper the rr genotype is

simply outnumbered by the susceptible ones and thus

completely displaced by competition. In the Bt area,

especially at the refuge border, rr is suppressed by ss

and rs coming from the refuge. Remarkably, as soon

as the number of resistant homozygotes in the Bt area

becomes large enough (Fig. 2b), the advective flux of

gene frequency theretofore opposing its diffusive flow

reverses its direction and promotes the spatial spread

of the resistance allele (Fig. 2c) in the final stage of

the transition process.

Thus, a key factor of the effectiveness of the ref-

uge as a source of susceptible insects is the pest mo-

bility. As already noted in analysis of Table 1, very

low mobility does not ensure an efflux of susceptible

genotypes that would suffice for overwhelming the

resistant genotype in the Bt area. In this case, such

weak diffusion simply subtracts from the ss density in

the refuge, increasing the chances of its displacement

by rr immigrants from the Bt area and thus speeding

up the spread of resistance. Interestingly, refuge effi-

cacy also declines when the mobility (i.e., diffusion
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Fig. 3. The time T(pr < 0.1) (years) in which the fre-

quency of the resistance allele in the pest population

reaches 10% as a function of pest mobility (δ) predicted

by (a) the two-level demo-genetic resource–pest model

(19),(3) and (b) a diffusional model based on FHW equa-

tions [i.e.,

(21),(16) without the advective term in the pr equation]

for a field with (solid) 10% and (dashed) 20% refuge.



exchange between refuge and Bt area) is infinitely

high, resulting in system homogenization and pan-

mixia. One can see that in both extreme cases the

demo-genetic and the FHW models give similar prog-

noses (cf. tables).

Incorporation of an explicit description for the

spatiotemporal dynamics of maize biomass in the

demo-genetic model (19),(3) allows account of the

dependence of pest reproduction on the state of the

plant resource, thereby making the model more realis-

tic. The results of numerical experiments with (19),(3)

qualitatively agree with those for the basic model

(6),(3). This confirms the importance of considering

the directed gene flux in the frequency form (21),(16).

Collating Fig. 3 with the corresponding columns in

Table 1, one can see that Bt resistance in the

two-level (19),(3) emerges somewhat faster than in

(6),(3). Indeed, in the Bt field where infestation is

largely suppressed by the toxin the biomass density

exceeds the equilibrium R* = 0.6K. This raises the

pest feeding rations so that its reproduction rate in

(19),(3) becomes higher than in (6),(3). [Recall that in

(19),(3) the pest reproduction intensity determines the

rate of evolution of the population genetic structure,

see (21).] Probably the use of a more realistic trophic

function accounting for saturation of the rations with

increasing resource, e.g., a Holling type II function

g(R) = aR/(1 + ahR), would extend the delay

T(pr < 0.1).

To bring the model closer to reality, one should

perhaps also consider the seasonal events in the sys-

tem, in particular, regular replanting and harvesting

(see. e.g., [42]). How can this affect the T(pr < 0.1)

estimates? On the one hand, any events resulting in

periodic reduction of plant mass and pest density, es-

pecially in the beginning of the crop year, should ad-

ditionally delay the evolution of resistance. On the

other hand, periodical homogenization of the system

is likely to accelerate the spreading of the resistance

gene. A definite answer awaits further studies.

Practical use of the conceptual model offered

here requires field observations and identification of

the parameters of a particular agroecosystem. A most

important factor determining the success of the HDR

strategy is the diffusion coefficient δ, which is hard to

specify. Evaluation of this parameter requires moni-

toring of large-scale movements of the pest density

spots rather than rapid motion of adult moths; there

are examples of such field studies [43, 44].
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