
Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН»

Бюллетень мониторинга изменений климата Земного шара

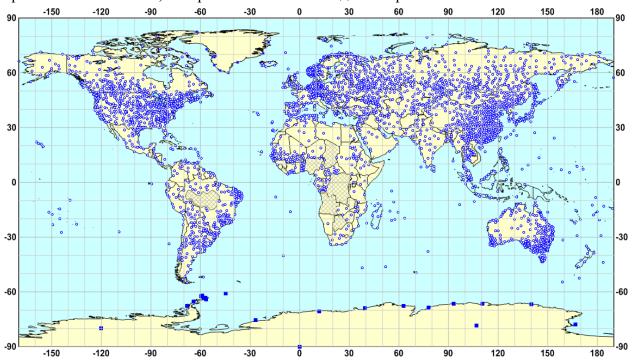
Приземная температура Зима 2014/2015

Москва 2015

$ОГЛАВЛЕНИЕ^1$

1.	ВВЕДЕНИЕ
2.	ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМЛИ
	НА ТЕРРИТОРИИ ЗЕМНОГО ШАРА ЗИМОЙ 2014/15 гг.
	ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ
3.	КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ
	ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ НА ТЕРРИТОРИИ ЗЕМНОГО
	ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ,
	1850-2015 гг. (ЗИМНИЙ СЕЗОН)
4.	ВРЕМЕННЫЕ РЯДЫ ПРОСТРАНСТВЕННО ОСРЕДНЕННЫХ
	АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2015 гг.
	(ЗИМНИЙ СЕЗОН)
5.	ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ
	ИЗМЕНЕНИЙ КЛИМАТА ЗЕМНОГО ШАРА, 1976-2015 гг.
	(ЗИМНИЙ СЕЗОН)
6.	ЗАКЛЮЧЕНИЕ

 1 1. Бюллетень подготовлен в ФГБУ «ИГКЭ Росгидромета и РАН». Данные текущих наблюдений (сводки КЛИМАТ из оперативного потока) подготовлены в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ».


^{2.} На обложке приведено поле сезонных аномалий температуры приземного воздуха над сушей Земного шара (зима 2014/2015 гг.).

^{3.} В июне-августе 2015 г., уже после выпуска настоящего бюллетеня, Met Office UK & UEA (см. http://www.Met Office.gov.uk/hadobs/) ввел новую версию базовых массивов HadCRUT4.4.0.0 и CRUTEM4.4.0.0 с сеточными глобальными данными об аномалиях приземной температуры. В связи с этим все материалы выпуска обновлены по данным новой версии (вместо версии 4.3.0.0)

1. ВВЕДЕНИЕ

Настоящий бюллетень открывает серию регулярных выпусков сезонных и годовых бюллетеней мониторинга глобальной температуры у поверхности земли. Основное содержание бюллетеня составляют данные о наблюдаемых сезонных и месячных особенностях температурного режима у поверхности (аномалии и экстремумы) на территории Земного шара в истекшем сезоне и о современных тенденциях их изменения. Все оценки базируются на данных стандартных метеорологических наблюдений за средней месячной приповерхностной температурой.

Основные результаты, представленные в настоящем бюллетене, получены авторами по данным метеорологических наблюдений на 3288 станциях глобальной сети (из них 703 станции расположены на территории России и стран СНГ). Сеть станций представлена на рисунке 1.1. Все эти станции передают телеграммы КЛИМАТ и имеют достаточное количество наблюдений за современный период (критерий отбора: начало наблюдений не позже 1970 г. и не менее 25 полных лет наблюдений в течение 1976-2010 гг.). Данные представляют осредненную за месяц среднесуточную температуру воздуха на станции на высоте 2м и охватывают период с 1901 года. Основу массива составили накопленные в ФГБУ «ИГКЭ Росгидромета и РАН» ряды наблюдений для 1383 станций Земного шара (пополняемый в реальном времени базовый массив мониторинга климата, ведущегося в ИГКЭ с конца 1980-х гг.). Массив расширен за счет данных станционных наблюдений с сайтов ФГБУ «ВНИИГМИ-МЦД» (http://www.meteo.ru) и Метеослужбы Великобритании и Университета Восточной Англии (http://www.cru.uea.ac.uk). Выполнен сравнительный анализ, контроль и согласование данных разных источников.

Рисунок 1.1 — Сеть станций в массиве Т3288 ИГКЭ. Заштрихованы области, не освещенные данными наблюдений. В Гренландии и Антарктиде станции расположены вдоль береговой линии плюс станция AMUNDSEN-SCOTT в центре материка (Южный полюс Земли).

Данные текущих наблюдений формируются в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ» из сводок «КЛИМАТ», поступающих по каналам связи в оперативном потоке, откуда передаются в ФГБУ ИГКЭ в форматах архивного хранения

(ежемесячно, с задержкой до 20-25 дней следующего месяца). Извлечение необходимых данных, их контроль, обработка и сопряжение с историческими рядами осуществляется в ФГБУ «ИГКЭ» средствами действующей технологии оперативного мониторинга климата и изменений климата на территории России. В настоящее время технология расширяется с учетом задач мониторинга глобального климата.

Ряд представленных ниже результатов получен с использованием набора сеточных данных HadCRUT4 (версия 4.4.0.0), содержащих значения среднемесячных аномалий приповерхностной температуры на глобальной сети 5-градусных боксов (данные Метеослужбы Великобритании и Университета Восточной Англии, http://www.Met Office.gov.uk/hadobs/). Пол приповерхностной температурой злесь понимаются объединенные данные аномалий температуры приземного воздуха над сушей (на высоте 2м, аналогично Т3288) и аномалий температуры воды в поверхностном слое морей и океанов (8-10 м). Массив получен в Met Office UK объединением и согласованием полей CRUTEM4 (версия 4.4.0.0, над сушей) и HadSST3 (версия 3.1.1.0, над океанами). Понятно, на территории континентов оценки аномалий температурного режима по используемым двум источникам (HadCRUT и T3288) должны быть близки. При этом, на наш взгляд, станционные данные Т3288 более точно описывают ситуацию над континентами (особенно локализацию экстремальных аномалий), а объединенные поля HadCRUT дают более полную и целостную глобальную картину. Ниже данные обоих источников будут упоминаться как характеристики «приземной температуры».

В бюллетене приводятся как пространственные распределения локальных месячных и сезонных аномалий температуры, так и временные ряды пространственно осредненных аномалий для Земного шара и полушарий в целом, а также для отдельных континентов, океанов и широтных поясов. Пространственное осреднение выполняется по данным об аномалиях с учетом плотности наблюдений. Для этого территория региона покрывается регулярной широтно-долготной сеткой 2.5*5 гр. и осредняются станционные аномалии внутри каждого образовавшегося бокса (ячейки сетки), после чего для каждого региона выполняется осреднение попавших в него ячеечных средних с весами, пропорциональными площади пересечения бокса с территорией региона. При временном осреднении (за сезон, год) разрешено отсутствие не более одного слагаемого (также в аномалиях). Зимний сезон включает декабрь предыдущего года.

Аномалии (отклонения от среднего за 1961-1990 гг.), как правило, сопровождаются соответствующими значениями эмпирической функции распределения (вероятности непревышения). В поле аномалий выделяются ареалы осуществления *климатических* экстремумов, под которыми понимаются значения, попавшие в p%-е «хвосты» распределения, т.е. значения с вероятностью непревышения P <= p% или P >= (100-p)% (в зависимости от знака аномалии). Дополнительно выделяются рекордные экстремумы, наблюдавшиеся впервые.

Временные ряды приводятся за весь доступный период наблюдений и дополняются линейным трендом, характеризующим тенденцию (среднюю скорость) изменений рассматриваемой величины за период современного потепления (с 1976 года). Тренд рассчитан методом наименьших квадратов и выражен в градусах за десятилетие (°С/10 лет). В ряде случаев приводятся также оценки тренда за последние 100 лет («вековые»). Вероятности непревышения рассчитываются за период с 1911 г. (до этого срока данные над океанами в массиве HadCRUT4 представляются сомнительными).

Отметим, что в бюллетене для оценки *температурного режима над сушей* земного шара используются преимущественно методика и станционные данные ИГКЭ (массив Т3288), но глобальные оценки (в среднем для Земного шара и полушарий) и пространственно осредненные временные ряды приводятся в бюллетене по обеим методикам — ИГКЭ и Hadley/CRU. Для среднегодовой температуры приземного воздуха такие временные ряды приведены на рис. 1.2. По оценкам авторов, среднее различие между ними составило 0.003 ± 0.023 °C для Земного шара (среднее \pm сигма за 1901-2014), 0.012 ± 0.021 °C для Северного полушария и 0.003 ± 0.028 °C для Южного полушария².

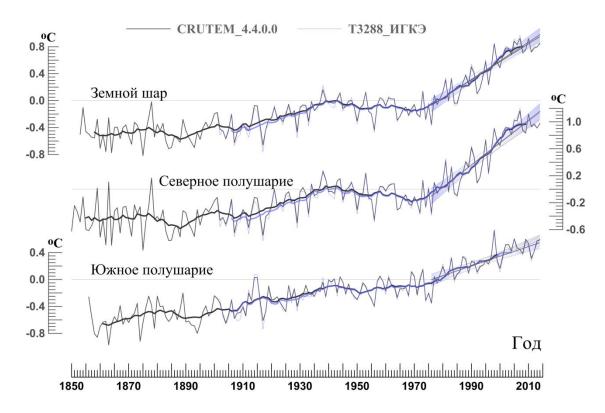


Рисунок 1.2 — Временные ряды пространственно осредненных аномалий среднегодовой температуры приземного воздуха (°С, 1850-2014 гг.) для территории Земного шара, Северного и Южного полушарий. Использованы глобальные временные ряды CRUTEM4 (Met Office UK, http://www.cru.uea.ac.uk/temperature) и станционные данные Т3288 (расчет по методике и данным ИГКЭ Росгидромета и РАН). Показаны 11-летние скользящие средние, линейные тренды за 1976-2014 гг. и их 95%-е доверительные интервалы

Аналогичное сравнение временных рядов для зимнего сезона представлено на рис. 2.1, а в табл. 2.1 (оценки аномалий 2015 г.) им соответствуют строки CRUTEM4 и IGCE. Сравнение подтверждает их достаточно тесное соответствие, в определенной мере свидетельствующее о репрезентативности данных массива Т3288 (включая методику их обработки) и реалистичности базирующихся на этом массиве оценок (по крайней мере, для крупных регионов).

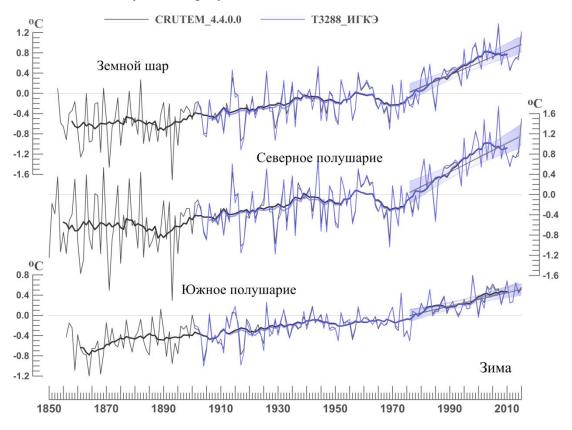
_

² Более полный набор оценок опубликован в статье «Географические и сезонные особенности современного глобального потепления» (Груза Г.В., Ранькова Э.Я., Рочева Э.В., Смирнов В.Д. Фундаментальная и прикладная климатология, 2015, №2, с. 41-62)

2. ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМЛИ НА ТЕРРИТОРИИ ЗЕМНОГО ШАРА ЗИМОЙ 2014/15 гг. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ

Анализируются характеристики приземного температурного режима зимой 2014/15 гг. на территории Земного шара и их обобщения для крупных регионов: полушария, континенты, океаны и основные широтные пояса. К последним относятся: тропический пояс (между северным и южным тропиками), два умеренных пояса (между каждым тропиком и полярным кругом) и два полярных пояса (за полярным кругом). Для выбранных регионов в таблице 2.1 приведены значения пространственно осредненных аномалий температуры зимой 2014/15 гг., и соответствующие значения эмпирической функции распределения (вероятности непревышения).

Таблица 2.1 – Пространственно осредненные значения аномалии приземной температуры на территории Земного шара зимой 2014/15 гг., в среднем за сезон и по месяцам


Регион	Зима		Декабрь		Январь		Февраль		
	vT_{2015}	F%	vT_{2014}	F%	vT_{2015}	F%	vT_{2015}	F%	
HadCRUT4 (суша+море)									
Земной шар*	0.661	99	0.634	99	0.688	99	0.660	98	
Северное полушарие*	0.950	99	0.898	99	0.993	99	0.958	97	
Южное полушарие*	0.372	97	0.373	96	0.380	95	0.364	94	
Атлантика (15-70N)	0.469	89	0.595	94	0.470	90	0.340	80	
Тихий океан (20-65N)	0.557	99	0.443	97	0.603	99	0.625	99	
Арктический пояс (65-90N)	1.950	93	2.053	89	1.220	72	2.576	92	
Умеренный пояс СП (25-65N)	1.191	98	1.029	97	1.401	98	1.144	94	
Тропики (25S-25N)	0.527	95	0.559	96	0.465	93	0.532	95	
Умеренный пояс ЮП (65-25S)	0.345	93	0.361	98	0.362	92	0.315	89	
Антарктический пояс (90-65S)	-0.144	46	-0.278	33	-0.320	35	0.160	85	
CRUTEM4 (cyma)									
Земной шар*	1.142	99	1.076	98	1.199	99	1.152	96	
Северное полушарие*	1.436	98	1.331	98	1.561	98	1.417	95	
Южное полушарие*	0.554	95	0.566	94	0.474	89	0.622	96	
IGCE-Т3288 (суша)			1		-				
Земной шар*	1.215	99	1.106	98	1.234	99	1.238	96	
Северное полушарие	1.498	99	1.336	97	1.563	98	1.499	96	
Южное полушарие	0.530	95	0.576	95	0.428	88	0.611	95	
Северная Америка	1.274	84	2.773	97	1.816	80	-0.725	30	
Евразия	2.261	99	1.166	88	2.352	98	3.083	98	
Южная Америка	0.538	93	0.518	91	0.684	94	0.390	82	
Африка	0.581	81	0.653	79	0.091	44	0.838	90	
Австралия	0.723	95	0.942	95	-0.102	51	1.428	98	
Антарктида	-0.445	27	-0.875	11	-0.180	49	0.004	55	

Условные обозначения (пояснения см. в тексте):

 vT_{2015} , ${}^{o}C$ — наблюденная аномалия зимой 2014/15 гг. (относительно 1961-1990 гг.); F — значение функции распределения F=prob(X \leq vT_{2015}) по данным за 1911-2014 гг.

Оценки в таблице сгруппированы в три блока, в соответствии с используемым для их расчета источником данных. Звездочкой указаны временные ряды глобально осредненных аномалий (для Земного шара и обоих полушарий), которые используются здесь в точном соответствии с их публикацией на сайтах «http://www.Met Office.gov.uk/» и «http://www.cru.uea.ac.uk/». Остальные временные ряды рассчитаны авторами по методике ИГКЭ по данным массивов HadCRUT4, CRUTEM4 или T3288 (как указано в таблице). Аномалии во всех случаях приведены в отклонениях от среднего за 1961-1990 гг.

Сопоставление временных рядов, рассчитанных по методике и данным Hadley/CRU и ИГКЭ для зимнего сезона (рис. 2.1 и строки CRUTEM4 и IGCE-T3288 в табл. 2.1), как и предыдущее сравнение для среднегодовой температуры (рис. 1.2), свидетельствует о хорошем согласии полученных результатов.

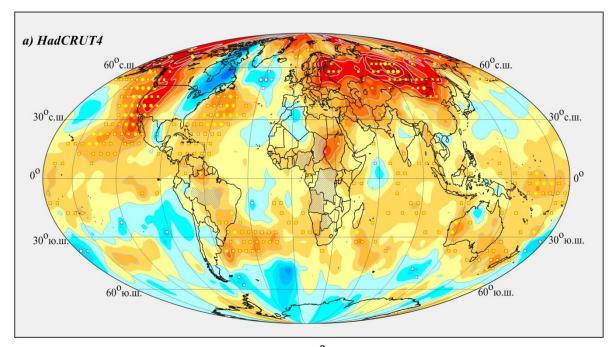
Рисунок 2.1 – См. рис. 1.2, но для средних сезонных аномалий (зимний сезон)

В соответствии с оценками в табл. 2.1 для Земного шара в целом (суша+море, HadCRUT4), зима 2014/15 гг. (аномалия 0.661° C) была второй самой теплой за всю историю наблюдений, после 2007 года (аномалия 0.697° C). За ними следуют 1998, 2002 и 2004 гг. с аномалиями 0.584, 0.579 и 0.569 °C, соответственно. В целом *над сушей Земного шара* рассматриваемый сезон также был вторым самым теплым после 2007 г. (как по данным CRUTEM4, так и по данным T3288).

Наиболее существенным оказался вклад Северного полушария, по-видимому, за счет теплого в течение всех зимних месяцев Тихого океана (в зоне 20-65N) и Евразии. В этих трех регионах, в среднем по территории и за сезон, зима 2014/15 гг. также оказалась на втором месте в соответствующих упорядоченных по убыванию рядах наблюдений, а вероятность непревышения наблюденных аномалий, соответственно, превысила 99%.

Из крупномасштабных региональных особенностей этого сезона наиболее существенными являются:

- Во всех рассмотренных регионах (кроме Антарктиды и Северной Америки в феврале), зимний сезон 2014/15 гг., в целом и во все месяцы, был теплее уровня 1961-1990 гг.
- Среди сезонных аномалий, осредненных по территории регионов, рекордных значений не наблюдалось, но во многих из них сезонная температура превысила 95-й процентиль, т.е. в них текущий сезон попал в число 5-6 наиболее теплых сезонов за период с 1911 г. (табл. 2.1).
- Экстремально теплый температурный режим в Тихом океане (в зоне 20-65N) установился в декабре 2013 г. и сохранялся таковым все последующее время, вплоть до конца текущего зимнего сезона (февраль 2015). Столь длительный теплый период требует, по-видимому, более тщательного изучения.

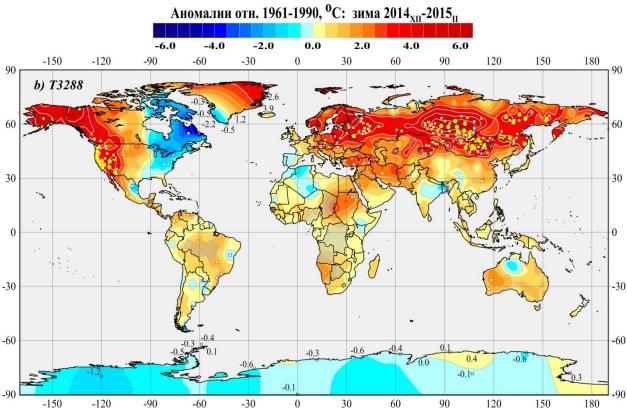
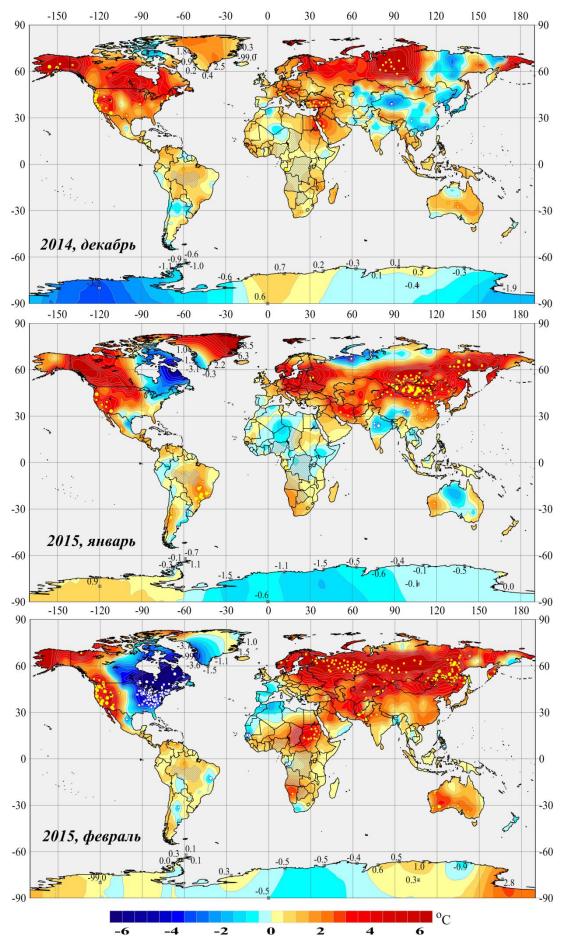

Географические особенности температурного режима зимой 2014/15 гг. на территории земного шара представлены на рисунках 2.2, 2.3, где приведены глобальные распределения сезонных и месячных аномалий приземной температуры в течение истекшей зимы. На рис. 2.2 совмещены два поля сезонных аномалий температуры: вверху — над всей территорией Земного шара (по объединенным данным НаdCRUT4, суша+море); внизу - только над сушей (по данным станций Т3288). Глобальные поля среднемесячных аномалий (рис. 2.3) построены по станционным данным Т3288 и, соответственно, данные над океанами отсутствуют.

На всех картах кружками белого и желтого цвета указано местоположение станций (или боксов), зафиксировавших рекордное для данного сезона (месяца) значение температуры, наблюдающееся впервые с 1911 года. Крупные (но не рекордные) аномалии, попавшие в 5% самых низких или самых высоких значений (так называемые 5%-е экстремумы), показаны значками того же цвета, но меньшего размера.

Видно, что зима 2014/15 гг. была очень теплой практически во всем умеренном поясе Евразии (кроме Западной Европы), на западе Северной Америки и на прилегающей акватории Тихого океана (рис. 2.2). На значительной территории сезонные аномалии температуры превысили 95-й процентиль, а в центральных и восточных районах Евразии, на западе Северной Америки и в Тихом океане (у берегов Северной Америки) они достигли рекордно высоких значений. Холодной зима была лишь на востоке Северной Америки, в Антарктическом регионе и в восточной части Тихого океана вдоль побережья Южной Америки.

Наиболее значительные аномалии (положительные и отрицательные) наблюдались на континентах Северного полушария, как в среднем за сезон, так и в отдельные месяцы.

В декабре практически вся территория Северной Америки, Гренландия и северная часть Евразии (до Таймыра и Байкала) находились в области тепла. В последующие месяцы в Евразии область тепла расширялась и в феврале занимала уже почти всю территорию; вдоль пояса умеренных широт температура превышала 95-й процентиль. В Северной Америке к февралю положительные аномалии сохранились только вдоль западного побережья, а остальную территорию занимал очаг отрицательных аномалий, с обширной областью рекордно низких температур. (В январе область отрицательных аномалий была ограничена территорией от Великих озер и Гудзонова залива до юговосточного побережья Гренландии.) Рекордно высокие температуры отмечались в январе в Монголии, в феврале — на западе Северной Америки и на востоке Сибири. Эти особенности полностью согласуются с приведенными выше региональными оценками.

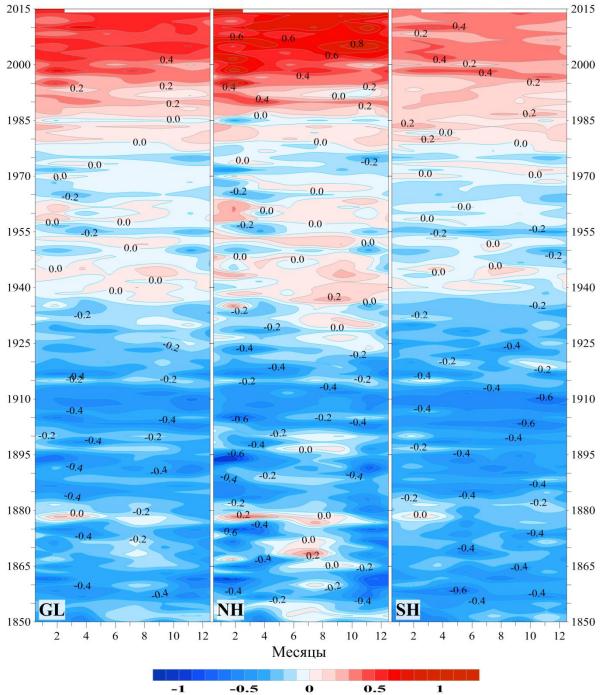

Рисунок 2.2 — Пространственное распределение сезонных аномалий приземной температуры (°C) на территории Земного шара зимой 2014/15 гг.: по данным Меt Office UK в центрах 5-градусных боксов (вверху, HadCRUT4, суша+море) и по станционным данным ИГКЭ (внизу, Т3288, только суша). Аномалии приведены в отклонениях от средних за 1961-1990 гг. Желтыми и белыми кружками двух размеров указано положение боксов/станций с 5%-ми и рекордными экстремумами (теплыми и холодными, соответственно). Для станций Антарктиды и Гренландии, учитывая отсутствие здесь внутриконтинентальных станций, дополнительно показаны числовые значения аномалий.

Рисунок 2.3 – См. рис. 2.2, но для средних месячных аномалий зимнего сезона 2014/15 гг. и только над сушей Земного шара (по данным T3288)

3. КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ НА ТЕРРИТОРИИ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ, 1850-2015 гг. (зимний сезон)

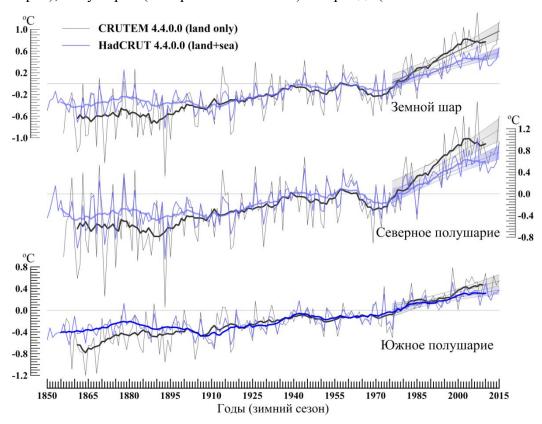

Наиболее общие особенности изменения температуры у поверхности земли во времени можно проследить по данным рис. 3.1, где в форме изоплет приведено изменение глобальной и полушарных температур за период инструментальных наблюдений, от месяца к месяцу (ось X) и от года к году (ось Y). Температура здесь выражена в отклонениях от средних за 1961-1990.

Рисунок 3.1 – Изменение средней месячной приповерхностной температуры, осредненной по территории Земного шара (слева), Северного (в центре) и Южного (справа) полушарий в течение периода с января 1850 г. по февраль 2015 г. (по данным HadCRUT4, Met Office UK).

В соответствии с рис. 3.1, вплоть до 1930-1940-х гг. глобальная температура оставалась ниже уровня 1961-1990 (отрицательные аномалии), с кратковременными теплыми периодами в Северном полушарии в 1870-1880-х и самым холодным периодом в обоих полушариях в начале 20-го столетия. Так, примерно в 1904-1913 гг., в отдельные месяцы средняя месячная аномалия приземной температуры Южного полушария опускалась до -0.7, -0.8°С. Потепление 1940-х гг. больше выражено в Северном полушарии в летне-осенний период года. Современное потепление также более интенсивно в Северном полушарии. Текущие данные (см. рис. 3.1, январь-февраль 2015 г.) продолжают тенденцию к потеплению на уровне 2014 г.

Особенности потепления зимних сезонов лучше видны из рис. 3.2, на котором сравниваются временные ряды глобально осредненных зимних температур, рассчитанные по объединенным данным (суша+море, синие кривые) и по данным только над сушей (черные кривые). Численные оценки трендов рассматриваемых рядов приведены в таблице 3.1 для двух периодов: 1976-2015 гг. (современное потепление) и 1916-2015 гг. (последние 100 лет). Сравнение выполнено для Земного шара в целом и для каждого из полушарий. Все ряды построены по опубликованным глобальным рядам Hadley/CRU (CRUTEM4 и HadCRUT4), что позволило охватить весь период (с 1850 г.) и исключить влияние возможных различий в методике осреднения. Для большей наглядности в табл. 3.2 приведено соотношение полученных оценок в зависимости от данных («суша» или «суша+море»), полушария (Северное или Южное) и периода (1976-2015 или 1916-2015).

Рисунок 3.2 – Изменение пространственно осредненных сезонных аномалий приземной температуры (зима) для Земного шара (вверху), Северного (в середине) и Южного (внизу) полушарий по объединенным данным над сушей и океанами (синие кривые) и по данным только над сушей (черные кривые).

Использованы глобальные временные ряды Met Office UK (HadCRUT4, CRUTEM4). Аномалии выражены в отклонениях от средних за 1961–1990 гг. На каждом рисунке дополнительно показаны: ход 11-летних скользящих средних, линейный тренд за 1976-2015 гг. и его 95% доверительный интервал.

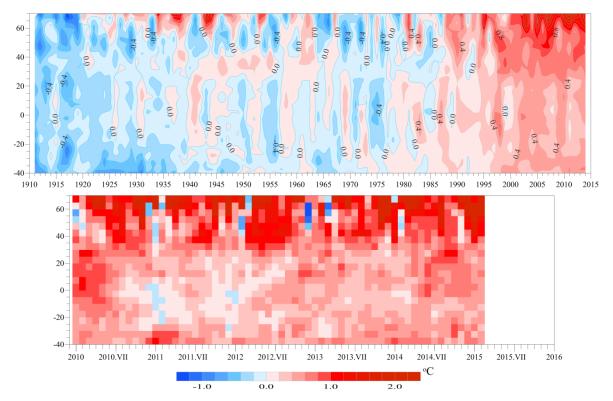
Таблица 3.1 – Коэффициенты линейного тренда (°*C*/10 лет) глобальных временных рядов приземной температуры за 1976-2015 гг. и 1911-2015 гг. для Земного шара и полушарий (зимний сезон, в среднем и по месяцам)

Регион	1976-2015				1916-2015				
Регион	зима	декабрь	январь	февраль	Зима	декабрь	январь	февраль	
HadCRUT4 (суша+море)									
Земной шар	0.149	0.149	0.147	0.150	0.079	0.077	0.078	0.082	
Северное полушарие	0.206	0.209	0.200	0.208	0.089	0.088	0.084	0.096	
Южное полушарие	0.092	0.089	0.094	0.093	0.069	0.065	0.071	0.069	
С R UTEM4 (суша)									
Земной шар	0.244	0.233	0.257	0.242	0.119	0.114	0.113	0.131	
Северное полушарие	0.296	0.282	0.306	0.302	0.138	0.133	0.125	0.157	
Южное полушарие	0.139	0.136	0.158	0.122	0.082	0.077	0.089	0.079	

Примечания. Оценки приведены для временных рядов, изображенных на рис. 3.2. Все оценки в таблице статистически значимы на 0.1%-м уровне.

Можно видеть (табл. 3.1), что современное потепление над сушей более значительно, чем интегрально (суша+море), и в Северном полушарии более значительно, чем в Южном (в том числе, по-видимому, благодаря преобладающей площади океанов в Южном полушарии). Тренд (средняя скорость) потепления 1976-2015 гг. в целом для Земного шара, Северного и Южного полушарий составил 0.244-0.296-0.139 °C/10 лет над сушей и только 0.149-0.206-0.092 над всей территорией (суша+море).

Таблица 3.2 – Соотношение оценок трендов сезонных аномалий глобальной температуры (зима) в зависимости от данных (CRU/HadCRU), полушария (СП/ЮП) и периода (1976-2015/1916-2015)


	1976-2015	1916- 2015	СП	ЮП
b _{CRU} / b _{HadCRU} («суша»/«суша+море»)				
Земной шар	1.64	1.51		
Северное полушарие (СП)	1.44	1.55		
Южное полушарие (ЮП)	1.51	1.19		
b _{СП} / b ЮП				
HadCRU (суша+море)	2.24	1.29		
CRUTEM (суша)	2.13	1.68		
b ₁₉₇₆₋₂₀₁₅ /b ₁₉₁₆₋₂₀₁₅				
HadCRU (суша+море)			2.31	1.33
CRUTEM (суша)			2.14	1.70

Соотношение оценок для трендов зимних температур этого периода практически не меняется для всех зимних месяцев. Таким образом, современное (с 1976 г.) глобальное потепление зимних сезонов складывается, в основном, за счет потепления климата Северного полушария (Северное полушарие теплеет примерно вдвое быстрее Южного) и, в значительной степени, за счет более активного потепления континентов (тренды по данным CRUTEM4 примерно в полтора раза выше, чем по HadCRUT4).

Что касается «вековых» тенденций (1916-2015 гг.), то в них ведущая роль также принадлежит Северному полушарию и континентам, но с меньшим разрывом между полушариями, а в Южном полушарии еще и с относительно менее быстрым потеплением континентов. Так, 100-летний тренд температуры зимнего сезона для Северного полушария больше Южного примерно в 1.3 по данным HadCRUT («суша+море») и в 1.7 по данным CRUTEM, и при этом в Южном полушарии тренды на суше выше соответствующих интегральных оценок не в ~1.5, а лишь в ~1.2 раза.

Оценки трендов для других сезонов и в среднем за год здесь не приводятся (полный комплект помещается в годовом бюллетене), но отметим, что по данным за 1976-2014 гг. их соотношение для Северного/Южного полушарий и для континентов/океанов было примерно таким же.

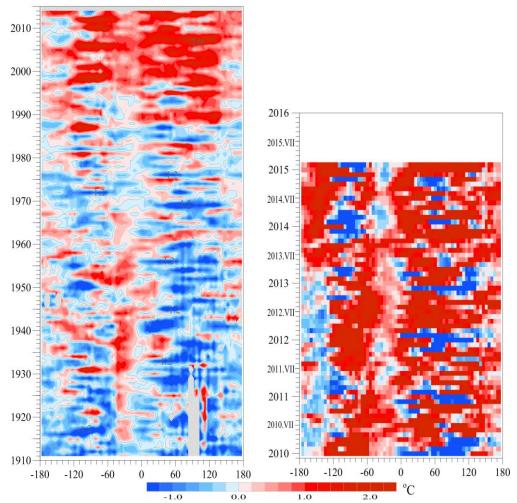
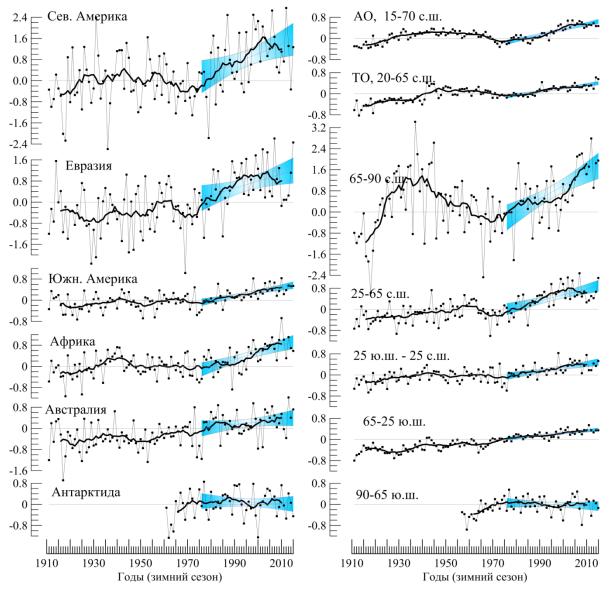

Более полное представление о характере и широтно-долготной структуре многолетних изменений температуры дают двумерные изоплеты (рис. 3.3, 3.4), показывающие изменение среднеширотных и средних меридиональных аномалий одновременно во времени и в пространстве. На каждом рисунке приведен многолетний ход профилей среднегодовых аномалий за период 1911–2014 гг. (с шагом год). Период с января 2010 г. по февраль 2015 г. дополнительно показан более детально, с шагом месяц. Диапазон широт на рис. 3.3 ограничен ввиду плохой освещенности полярных поясов данными наблюдений. Меридиональные средние на рис. 3.4 рассчитаны осреднением аномалий вдоль каждого меридиана в поясе 40-60 гр. с.ш.

Рисунок 3.3 – Изменение с широтой (ось Y) и во времени (ось X) среднеширотных аномалий среднегодовой (вверху, 1911-2014) и среднемесячной (внизу, $2010_{\rm I}$ - $2015_{\rm II}$) температуры у поверхности. *Расчет выполнен по данным Met Office UK (HadCRUT4, суша+море). Базовый период 1961-1990 гг.*

Из рис. 3.3, по-видимому, можно заключить, что современное потепление началось в 1970-х, но глобальным стало (и остается до сих пор) лишь к 1990-м. С середины 2010 г. потепление в Южном полушарии стало ослабевать, но в последние годы вновь наметилась

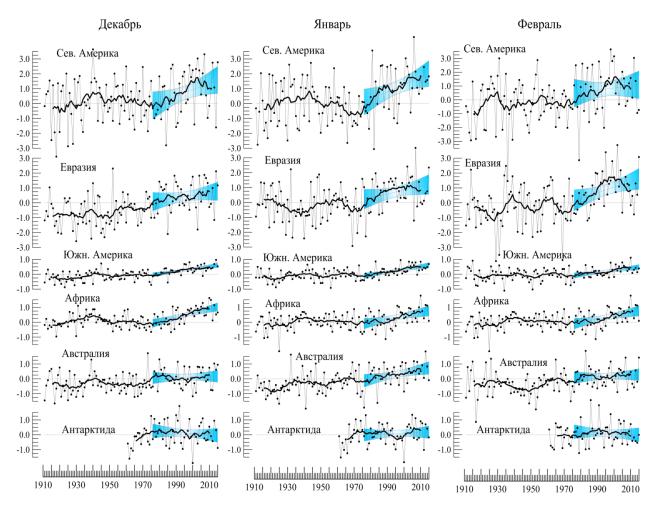
тенденция к некоторому его усилению (особенно в зимние сезоны). Во внетропических широтах СП наблюдаются эпизоды чередующихся холодных и теплых периодов, снижающие интегральную оценку годовых трендов.

Рисунок 3.4 - Изменение с долготой (ось X) и во времени (ось Y) аномалий среднегодовой (слева, 1850-2014 гг.) и среднемесячной (справа, $2010_{\text{I}}-2015_{\text{II}}$) температуры у поверхности земли, осредненных вдоль каждого меридиана в широтном поясе 40-60 с.ш. *Расчет выполнен по данным Меt Office UK (HadCRUT4, суща+море)*. *Базовый период 1961-1990 гг.*


Судя по рис. 3.4 (слева), наибольший вклад в изменчивость и изменение температурного режима умеренных широт СП принадлежит континентам. Можно видеть, что потепление 1940-х гг. коснулось, в основном, Атлантики. В конце 1970-х началось потепление континентов, а несколько позже — чередование теплых и холодных периодов в Тихоокеанском секторе (у западного побережья Америки). Последнее может говорить об ослаблении тенденции к потеплению в этом районе. Подобная ситуация в российском секторе, начавшаяся примерно в 2010 г., связана с чередой экстремально холодных зимних сезонов (рис. 3.4, справа). Данные текущего сезона указывают на начало теплого периода в этом секторе.

4. ВРЕМЕННЫЕ РЯДЫ ПРОСТРАНСТВЕННО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2015 гг.

(зимний сезон)


На рис. 4.1 рассматриваются временные ряды пространственно осредненных сезонных аномалий температуры для континентов, океанов (Атлантический и Тихий в северном полушарии) и основных широтных поясов земного шара. Аналогичные ряды среднемесячных аномалий (декабрь, январь, февраль) приведены на рис. 4.2 и 4.3.

Расчеты выполнены по методике ИГКЭ. Данные до 1911 г. не приводятся, т.к. представляются недостаточно полными и надежными (особенно над океанами). На всех временных рядах показаны тренды за период 1976-2015 гг., условно принятый за период современного глобального потепления. Числовые оценки трендов приведены в табл. 4.1

Рисунок 4.1 – Временные ряды пространственно осредненных сезонных (зима) аномалий приземной температуры для континентов (слева), северных частей Атлантического и Тихого океанов (справа вверху) и основных широтных поясов земного шара (справа внизу).

Расчеты выполнены по методике ИГКЭ по данным Т3288 (для континентов) и HadCRUT4 (для океанов и широтных поясов). Аномалии приведены в отклонениях от средних за 1961—1990. Сглаженные кривые (жирная линия) получены 11-летним скользящим осреднением. Показан линейный тренд за 1976-2015 гг. и его 95% -й доверительный интервал (голубая заливка).

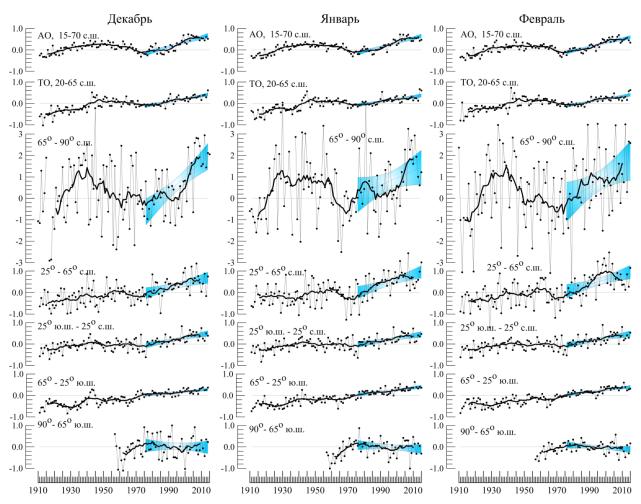


Рисунок 4.2 – См. рис. 4.1, но для средних месячных аномалий (декабрь, январь, февраль) и только для континентов. Расчеты выполнены по станционным данным T3288 и методике ИГКЭ.

Таблица 4.1 – Коэффициенты линейного тренда (°C/10 лет) пространственно осредненных аномалий приземной температуры за 1976-2015 гг. для северных частей Атлантического и Тихого океанов, основных широтных поясов и континентов земного шара (в среднем за сезон и по месяцам)

Регион	Зима	Декабрь	Январь	Февраль					
HadCRUT4 (суша+море)									
Атлантика (15-70N)	0.201	0.214	0.206	0.182					
Тихий океан (20-65N)	0.129	0.140	0.116	0.130					
Арктический пояс (65-90N)	0.501	0.681	0.329	0.492					
Умеренный пояс СП (25-65N)	0.225	0.201	0.245	0.226					
Тропики (25S-25N)	0.135	0.146	0.123	0.135					
Умеренный пояс ЮП (65-25S)	0.087	0.070	0.093	0.092					
Антарктический пояс (90-65S)	-0.030	-0.032	-0.048	-0.053					
IGCE-T3288 (cyua)									
Северная Америка	0.363	0.439	0.491	0.153					
Евразия	0.267	0.178	0.251	0.370					
Южная Америка	0.164	0.163	0.181	0.142					
Африка	0.266	0.284	0.222	0.278					
Австралия	0.100	0.026	0.220	0.051					
Антарктида	-0.027	-0.074	0.048	-0.055					

Примечание: Жирным курсивом выделены оценки, статистически значимые на 1%-м уровне. Оценки, *незначимые* даже на 10% -уровне указаны серой заливкой.

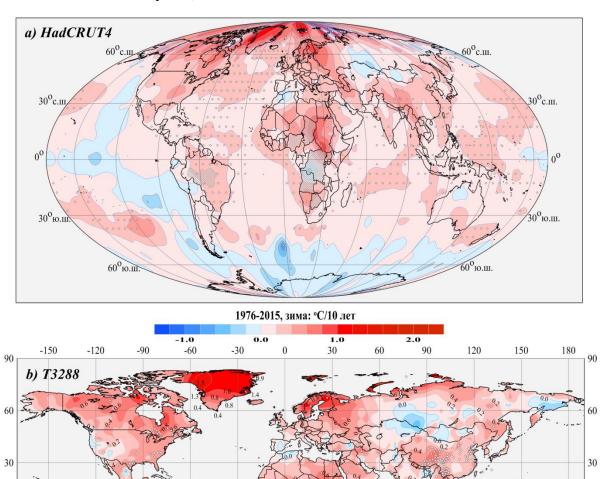


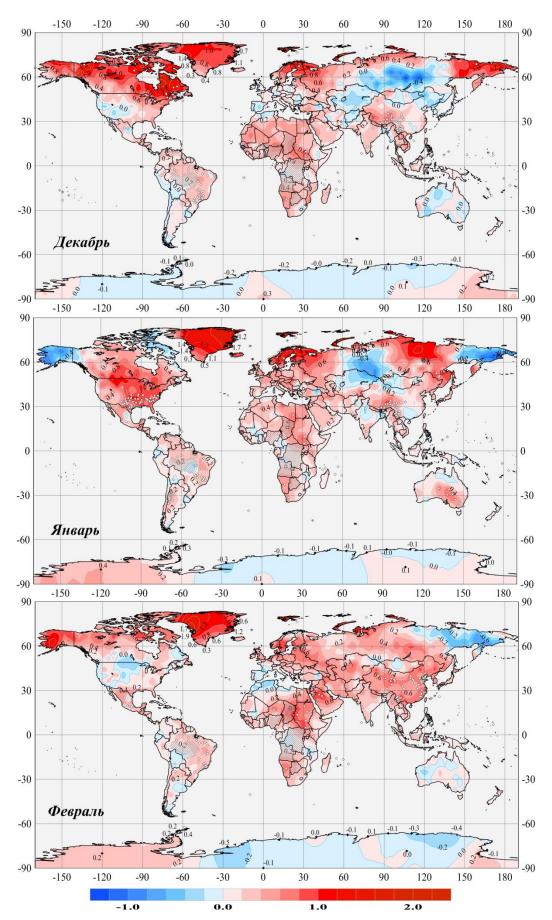
Рисунок 4.3 – См. рис.4.2, но для океанов и широтных поясов земного шара. *Расчеты* выполнены по методике ИГКЭ по данным Met Office UK в центрах 5-градусных боксов (HadCRUT4)

На основании оценок трендов в табл. 4.1, по-видимому, можно заключить, что в изменении приземного температурного режима последнего 40-летия на территории Земного шара преобладает тенденция к потеплению зимних сезонов. Во всех широтных зонах, кроме Антарктического пояса (90-65 гр. ю.ш.), тренд положительный, статистически значимый на 5%-м и даже на 1%-м уровне. В Антарктическом поясе хотя и выявляется тренд к похолоданию зим, но эти оценки статистически незначимы даже при α=10%. Отмеченная тенденция характерна и для континентов (когда рассматривается только температура приземного воздуха над сушей) – потепление зим преобладает на всех континентах, кроме Антарктиды. В Австралии тренд положителен, но статистически незначим. На материках Северного полушария тренд также положителен, но оценки его, в сравнении с зимним сезоном, менее убедительны (уровень значимости α>10%).

5. ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА ЗЕМНОГО ШАРА, 1976-2015 гг. (зимний сезон)

Пространственные распределения оценок локальных трендов на территории земного шара, рассчитанные по данным о глобальных полях сезонных аномалий температуры за 1976-2015 гг., приведены на рис. 5.1. На верхнем фрагменте представлены оценки по объединенным данным HadCRUT4 над всей территорией земного шара, а на нижнем – только над сушей, по станционным данным T3288.

-150 -120 -90 -60 -30 0 30 60 90 120 150 180


Рисунок 5.1 - Пространственное распределение коэффициентов линейного тренда средней за зимний сезон приземной температуры за период 1976-2015 гг. (в °С/10 лет). Для станций Гренландии и Антарктиды (черные точки) показаны числовые значения коэффициентов тренда. Боксы/станции, на которых тренд статистически значим на 1%-м уровне, выделены пустыми кружками. Использованы данные: вверху — HadCRUT4, Met Office UK (данные в центрах 5-градусных боксов над континентами и океанами); внизу — Т3288, ИГКЭ (данные на сети 3288 станций, суща).

-30

-60

-30

-60

Рисунок 5.2 – См. рис. 5.1, но для коэффициентов линейного тренда средней месячной температуры воздуха (декабрь, январь, февраль) над сушей земного шара. Расчет выполнен по станционным данным Т3288- ИГКЭ (только суша) за 1976-2015 гг.

В сравнении с 1976-2014 гг., глобальная картина трендов в изменении температурного режима зимних сезонов последних 40 лет изменилась незначительно. По данным за 1976-2015 гг. (рис. 5.1), по-прежнему, на большей части земного шара отмечается тренд к потеплению зимних сезонов, а области похолодания сохраняются в центральной части Евразии, Австралии, Антарктике и в восточной части Тихого океана. При этом тренд к потеплению несколько усилился в Северной Атлантике, включая восточное побережье Северной Америки и Скандинавию, а область отрицательных трендов заметно сократилась в Евразии и в Тихом океане (у берегов Северной Америки), но расширилась в Антарктических морях Южного океана.

Наибольшая скорость роста температуры в декабре отмечается в северных районах Евразии и Северной Америке, в январе – в Северной Америке, в Европе и Средней Сибири, в Китае и Австралии, в феврале, наиболее значительное, на южной территории Евразии и на северо-востоке Африки (рис.5.2).

Следует, однако, отметить, что в целом интенсивность всех трендов, положительных и отрицательных, достаточно слабая, особенно на территории континентов. Тренд к похолоданию зим практически всюду (кроме Арктических морей) статистически незначим даже на 15% уровне. Интенсивный тренд к потеплению, статистически значимый хотя бы на 5%-м уровне, отмечается, главным образом, над океанами (самый заметный – в Северной Атлантике) и на континентах Южного полушария (кроме Антарктиды). На континентах северного полушария к таким областям относятся: восточная территория Северной Америки, Скандинавия, западные и южные районы европейской части России, и частично вся территория Южной и Юго-восточной Азии, включая Китай.

Напомним для сравнения, что годовые локальные тренды приземной температуры за 1976-2014 гг. положительны практически на всей территории суши Земного шара и статистически значимы на 5% уровне на 67% рассматриваемых станций. Эти станции расположены, в основном, в Северном полушарии – в Северной Америке (на территории США) и в Евразии (исключая Западную и Среднюю Сибирь с прилегающими районами Казахстана).

6. ЗАКЛЮЧЕНИЕ

- 1. В целом для территории Земного шара зима 2014/15 гг. была второй самой теплой за всю историю наблюдений как по объединенным данным HadCRUT4 (суша+море), так и по данным только над сушей CRUTEM4 и Т3288. По данным HadCRUT4 средняя за сезон аномалия температуры составила для Земного шара 0.661°C. Более теплым был лишь 2007 г. (аномалия 0.697°C), за ними 1998, 2002 и 2004 гг. с аномалиями 0.584, 0.579 и 0.569 °C, соответственно.
- 2. Второй самой теплой зима 2014/15 гг. была и в среднем по территории Северного полушария по данным HadCRUT4 и T3288 (по данным CRUTEM4 третьей). Наиболее существенным, по-видимому, оказался вклад Евразии и теплого в течение всех зимних месяцев Тихого океана (в зоне 20-65N). В Тихом океане экстремально теплый температурный режим установился в декабре 2013 г. и сохранялся таковым все последующее время, по февраль 2015 г. включительно.
- 3. Во всех рассмотренных крупных регионах (континенты, океаны, основные широтные пояса) зимний сезон 2014/15 гг., в целом и во все месяцы, был теплее уровня 1961-1990 гг. (кроме Антарктиды и Северной Америки в феврале). Хотя ни в одном из этих регионов средняя по территории температура не перекрыла прежний максимум, во многих из них средняя за сезон температура превысили 95-й процентиль, т.е. в них текущий сезон попал в число 5-6 самых теплых зимних сезонов за период с 1911 г.
- 4. Пространственное распределение аномалий температуры на территории земного шара показывает, что зима 2014/15 гг. была очень теплой в Евразии (вдоль всего пояса умеренных широт, исключая западную Европу), на западе Северной Америки и на прилегающей акватории Тихого океана. На значительной территории аномалии температуры превышали 95-й процентиль, а в центральных и восточных районах Евразии, на западе Северной Америки и в Тихом океане они достигли рекордно высоких значений. В январе рекордно высокие температуры отмечались в Монголии, в феврале на западе Северной Америки и на востоке Сибири.
- 5. Холодной зима была лишь на востоке Северной Америки (в феврале здесь отмечена обширная область рекордно низких температур), в Антарктическом регионе и в восточной части Тихого океана вдоль побережья Южной Америки.
- 6. Современное (1976-2015 гг. г.) потепление зимних сезонов складывается, в основном, за счет потепления климата Северного полушария (Северное полушарие теплеет примерно вдвое быстрее Южного) и, в значительной степени, за счет более активного потепления континентов (тренды по данным CRUTEM4 примерно в полтора раза выше, чем по HadCRUT4). Так, тренд (средняя скорость) потепления 1976-2015 гг. в целом для Земного шара, Северного и Южного полушарий составил, соответственно, 0.244, 0.296, 0.139 °C/10 лет над сушей и только 0.149, 0.206, 0.092 над всей территорией (суша+море).
- 7. Локальные тренды приземной температуры (1976-2015 гг.) на большей части земного шара, по-прежнему, положительны. Области похолодания сохраняются в центральной части Евразии, Австралии, Антарктике и в восточной части Тихого океана. При этом тренд к потеплению несколько усилился в Северной Атлантике, включая восточное побережье Северной Америки и Скандинавию, а область отрицательных

трендов заметно сократилась в Евразии и в Тихом океане (у берегов Северной Америки), но расширилась в Антарктических морях Южного океана.

- 8. В целом, интенсивность всех трендов, положительных и отрицательных, достаточно слабая, особенно на территории континентов. Тренд к похолоданию зим практически всюду (кроме Арктических морей) статистически незначим даже на 15% уровне. Интенсивный тренд к потеплению, статистически значимый хотя бы на 5%-м уровне, отмечается, главным образом, над океанами (самый заметный в Северной Атлантике) и на континентах Южного полушария (кроме Антарктиды). На континентах северного полушария к таким областям относятся: восточная территория Северной Америки, Скандинавия, западные и южные районы европейской части России, практически вся территория Южной и Юго-восточной Азии и, частично, Китай.
- 9. Внутри сезона картина трендов неоднородна. Наибольшая скорость роста температуры в декабре отмечается в северных районах Евразии и Северной Америке, в январе в Северной Америке, в Европе и Средней Сибири, в Китае и Австралии, в феврале наиболее значительная на южной территории Евразии и на северо-востоке Африки.

Регулярные сезонные результаты мониторинга климата и их годовые обобщения доступны на сайте ИГКЭ (http://climatechange.su, http://www.igce.ru).