
Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФГБУ «Институт глобального климата и экологии имени академика Ю.А. Израэля»

# **Бюллетень мониторинга изменений** климата Земного шара

## Приземная температура

## Весна 2020



Москва 2020

### ОГЛАВЛЕНИЕ<sup>1,2</sup>

| 1. | ВВЕДЕНИЕ                                                                                                                                       | 3  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ВЕСНОЙ 2020 года. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ                                                        | 6  |
| 3. | КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ 1850-2020 гг. (весенний сезон) | 12 |
| 4. | ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2020 гг. (весенний сезон)                                          | 17 |
| 5. | ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2020 гг. (весенний сезон)                                                       | 20 |
| 6  | ЗУКЛЮПЕНИЕ                                                                                                                                     | 24 |

\_

 $<sup>^1</sup>$  Бюллетень подготовлен в ФГБУ «ИГКЭ». Данные текущих наблюдений (сводки КЛИМАТ и СИНОП из оперативного потока) подготовлены в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ». Все Бюллетени мониторинга климата, сезонные и годовые, выпускаемые в ФГБУ «ИГКЭ», размещаются на сайте http://climatechange.igce.ru/

 $<sup>^2</sup>$  На обложке приведено поле средних сезонных аномалий температуры приземного воздуха над сушей Земного шара: весна 2020 года. Использованы станционные данные ИГКЭ: T3288.

#### 1. ВВЕДЕНИЕ

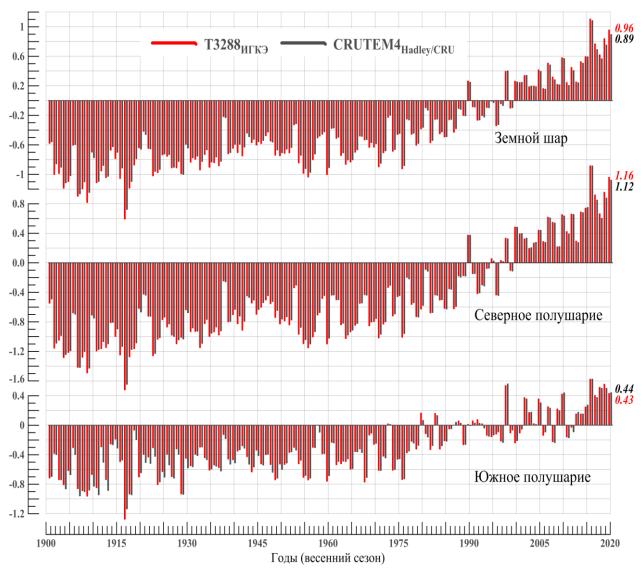
В настоящем бюллетене представлены данные о климатических аномалиях весеннего сезона 2020 года и обновленные (с учетом этих данных) оценки тенденций в изменении температурного режима весенних сезонов на территории земного шара в течение 1976–2020 гг. (по разделу «приземная температура»). Оценки приведены для сезона в целом и каждого из месяцев (март-апрель-май).

Бюллетень подготовлен в рамках оперативного мониторинга климата в ФГБУ «ИГКЭ»<sup>3</sup>, с использованием данных метеорологических наблюдений о среднемесячной температуре приземного воздуха на 3288 наземных станциях земного шара (массив Т3288 - данные ИГКЭ; массив сформирован и ежемесячно пополняется средствами технологии мониторинга на основе телеграмм КЛИМАТ, СИНОП).

Параллельно в бюллетене приводятся оценки по данным о приповерхностной температуре на сети 5-градусных боксов, охватывающей всю территорию земного шара, включая континенты и океаны (массивы HadCRUT4, CRUTEM4, HadSST3 - данные метеослужбы Великобритании<sup>4</sup>; в бюллетене упоминаются как «данные Hadley/CRU»).

Таким образом, массив Т3288 служит базовым массивом для оценки состояния температурных условий на суше земного шара, а массив HadCRUT4 используется для создания полной картины над сушей и океанами. Глобальные временные ряды CRUTEM4, HadSST3 приводятся как дополнительная информация из альтернативного источника (в том числе, для сравнения с одноименными данными ИГКЭ с целью лучшего понимания меры их неопределенности). В соответствии с рекомендацией ВМО<sup>5</sup>, все основные оценки приводятся в аномалиях температуры относительно базового периода 1981-2010 гг.

Развернутый комментарий к материалам бюллетеня с описанием используемых источников, сети станций и элементов методики размещен на сайте ИГКЭ<sup>6</sup>.


Сравнение глобальных временных рядов сезонных аномалий температуры приземного воздуха по данным Т3288 (ИГКЭ) и CRUTEM4 (Hadley/CRU). Близость рядов примерно с середины прошлого столетия четко видна уже визуально (рис. 1.1). Количественные результаты их сравнения (статистические характеристики попарных разностей) по данным за 1976-2020 гг. и 1921-2020 гг. (последнее 100-летие) приведены в табл. 1.1 для Земного шара, Северного и Южного полушарий.

 $<sup>^3</sup>$  Решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 20 декабря 2016 г. – <a href="http://method.meteorf.ru">http://method.meteorf.ru</a>

<sup>&</sup>lt;sup>4</sup> Массивы CRUTEM4 (температура воздуха над сушей), HadSST3 (температура воды на поверхности океанов и морей) и HadCRUT4 (объединенные данные над континентами и океанами) созданы и поддерживаются совместно двумя коллективами Великобритании — Хэдли-центром (Met Office Hadley Centre) и Университетом Восточной Англии (CRU UEA). Данные ежемесячно обновляются и публикуются производителем на web-сайтах <a href="http://www.MetOffice.gov.uk">http://www.MetOffice.gov.uk</a> и <a href="http://www.cru.uea.ac.uk">http://www.MetOffice.gov.uk</a> и <a href="http://www.cru.uea.ac.uk">http://www.detOffice.gov.uk</a> и <a href="http://www.cru.uea.ac.uk">http://www.cru.uea.ac.uk</a> в форме глобальных сеточных полей (в центрах 5-градусных боксов) и <a href="http://www.cru.uea.ac.uk">http://www.cru.uea.ac.uk</a> в форме глобальных сеточных полей (в центрах 5-градусных боксов) и <a href="http://www.cru.uea.ac.uk">http://www.cru.uea.ac.uk</a> в форме глобальных сеточных полей (в центрах 5-градусных боксов) и <a href="http://www.cru.uea.ac.uk">http://www.cru.uea.ac.uk</a> в форме глобального шара и обоих полушарий). В данном выпуске использованы данны

<sup>&</sup>lt;sup>5</sup> WMO, 2018: Press Release Number: 18-01-2018/WMO confirms 2017 among the three warmest years on record.

<sup>&</sup>lt;sup>6</sup> О бюллетене GCCM (read me). URL: http://climatechange.igce.ru /index.php?option=com\_docman &task=doc\_download&gid=220 &Itemid=76&lang=ru.



**Рисунок 1.1** — Временные ряды пространственно осредненных сезонных аномалий температуры приземного воздуха над сушей Земного шара, Северного и Южного полушарий (°С, 1901-2020 гг., весна). *Использованы временные ряды, рассчитанные по данным массива Т3288 (ИГКЭ) и глобальные временные ряды CRUTEM4 (Hadley/CRU).* 

**Таблица 1.1** – Оценки близости/различия глобальных временных рядов Т3288 (ИГКЭ) и CRUTEM4 (Hadley/CRU) в среднем за весенний сезон для территории суши Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий

| Overvier                         |      | 1976-202 | 0    |       | 1921-2020 |      |
|----------------------------------|------|----------|------|-------|-----------|------|
| Оценка                           | ЗШ   | СП       | ЮП   | ЗШ    | СП        | ЮП   |
| Корреляция рядов                 | 1.00 | 1.00     | 0.99 | 1.00  | 1.00      | 0.99 |
| Среднее различие, °С             | 0.01 | 0.01     | 0.00 | -0.02 | -0.02     | 0.01 |
| СКО (сигма) различий, °С         | 0.03 | 0.02     | 0.03 | 0.04  | 0.04      | 0.05 |
| Среднее абсолютное различие, °С  | 0.02 | 0.02     | 0.03 | 0.03  | 0.03      | 0.04 |
| Макс. абсолютное различие, °С    | 0.09 | 0.08     | 0.10 | 0.12  | 0.12      | 0.15 |
| Разность коэфф. тренда, °C/10лет | 0.01 | 0.01     | 0.00 | 0.01  | 0.01      | 0.00 |
| CKO T3288, °C                    | 0.45 | 0.55     | 0.29 | 0.51  | 0.60      | 0.34 |
| CKO CRUTEM4, °C                  | 0.43 | 0.53     | 0.28 | 0.48  | 0.58      | 0.34 |

Можно видеть, что среднее различие рядов по модулю не превышает  $0.02^{\circ}$ С (после  $1976 \, \text{г.} - 0.01^{\circ}$ С) (табл. 1.1, рис. 1.1). Стандартные отклонения различий ( $0.02-0.05^{\circ}$ С) на порядок ниже стандартного отклонения самих рядов ( $0.28-0.60^{\circ}$ С). За период современного потепления ( $1976-2020 \, \text{гг.}$ ) максимальное различие составило лишь  $0.10^{\circ}$ С (ЮП, 1980), а за весь вековой период  $0.15^{\circ}$ С (ЮП, 1926). При этом во всех случаях ряды характеризуются исключительно высокой корреляцией (не ниже 0.99) и предельно низким различием трендов (до  $+0.01^{\circ}$ С/ $10 \, \text{лет}$ ).

Межгодовые изменения приземной температуры весеннего сезона последних пяти лет (от момента абсолютного максимума в 2016 г.), в среднем по территории суши Земного шара и полушарий, представлены в таблице 1.2. Можно видеть, что в Северном полушарии похолодание 2017-2018 гг. в значительной мере компенсировалось сменившим его двухлетним потеплением (-0.649/-0.711 против -0.155/-0.193°С), тогда как в Южном полушарии нынешнее похолодание практически вернуло температуру к уровню 2017 г.

**Таблица 1.2** – Межгодовые изменения приземной температуры весеннего сезона относительно весны экстремального 2016 г.

(в среднем по территории суши Земного шара и полушарий, °С)

| Межгодовые | Данны  | ıе <b>Т3288,</b> ⁰С ( | ИГКЭ)  | Данные CRUTEM4, °C<br>(Hadley/CRU) |        |        |  |
|------------|--------|-----------------------|--------|------------------------------------|--------|--------|--|
| разности   | 3Ш     | СП                    | ЮП     | ЗШ                                 | СП     | ЮП     |  |
| 2016       | 1.105  | 1.314                 | 0.625  | 1.083                              | 1.313  | 0.624  |  |
| 2017-2016  | -0.337 | -0.394                | -0.222 | -0.391                             | -0.463 | -0.249 |  |
| 2018-2017  | -0.148 | -0.255                | 0.110  | -0.125                             | -0.248 | 0.124  |  |
| 2019-2018  | 0.218  | 0.292                 | 0.043  | 0.185                              | 0.276  | 0.002  |  |
| 2020-2019  | 0.118  | 0.202                 | -0.125 | 0.142                              | 0.242  | -0.060 |  |
| 2020-2016  | -0.149 | -0.155                | -0.194 | -0.189                             | -0.193 | -0.183 |  |

## 2. ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ВЕСНОЙ 2020 ГОДА. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ

Весна 2020 года была *вторым самым теплым весенним сезоном* по Земному шару в целом и в Северном полушарии (после рекордного 2016 года), а в Южном полушарии – пятым самым теплым весенним сезоном за всю историю наблюдений (табл. 2.1), как в целом для суши и моря, так и для суши отдельно. На поверхности океанов (данные HadSST3, только море) весна 2020 г. была *самой теплой* за весь период наблюдений в Северном полушарии, *четвертой* – в Южном полушарии и *второй* – в целом по Земному шару.

**Таблица 2.1** — Самые теплые весенние сезоны по данным разных источников для Земного шара, Северного и Южного полушарий:

средняя за сезон аномалия температуры VT и год наблюдения

| No.                | 3      | Ш           |              | СП           | Н     | ОП          |  |  |  |  |  |  |
|--------------------|--------|-------------|--------------|--------------|-------|-------------|--|--|--|--|--|--|
| Nº                 | VT, °C | Год (весна) | VT,°C        | Год (весна)  | VT,°C | Год (весна) |  |  |  |  |  |  |
|                    |        | HadCRUT     | 4 (Hadley/CH | RU, суша+мор | e)    |             |  |  |  |  |  |  |
| 1                  | 0.618  | 2016        | 0.829        | 2016         | 0.405 | 2016        |  |  |  |  |  |  |
| 2                  | 0.545  | 2020        | 0.790        | 2020         | 0.343 | 1998        |  |  |  |  |  |  |
| 3                  | 0.457  | 2017        | 0.607        | 2017         | 0.329 | 2019        |  |  |  |  |  |  |
| 4                  | 0.456  | 2019        | 0.581        | 2019         | 0.309 | 2017        |  |  |  |  |  |  |
| 5                  | 0.398  | 2015        | 0.570        | 2015         | 0.298 | 2020        |  |  |  |  |  |  |
| Т3288 (ИГКЭ, суша) |        |             |              |              |       |             |  |  |  |  |  |  |
| 1                  | 1.105  | 2016        | 1.314        | 2016         | 0.625 | 2016        |  |  |  |  |  |  |
| 2                  | 0.956  | 2020        | 1.159        | 2020         | 0.556 | 2019        |  |  |  |  |  |  |
| 3                  | 0.838  | 2019        | 0.957        | 2019         | 0.536 | 1998        |  |  |  |  |  |  |
| 4                  | 0.768  | 2017        | 0.920        | 2017         | 0.513 | 2018        |  |  |  |  |  |  |
| 5                  | 0.620  | 2018        | 0.740        | 2015         | 0.431 | 2020        |  |  |  |  |  |  |
|                    |        | CRUTI       | EM4 (Hadley  | /CRU, суша)  |       |             |  |  |  |  |  |  |
| 1                  | 1.083  | 2016        | 1.313        | 2016         | 0.624 | 2016        |  |  |  |  |  |  |
| 2                  | 0.894  | 2020        | 1.120        | 2020         | 0.559 | 1998        |  |  |  |  |  |  |
| 3                  | 0.752  | 2019        | 0.878        | 2019         | 0.501 | 2019        |  |  |  |  |  |  |
| 4                  | 0.692  | 2017        | 0.850        | 2017         | 0.499 | 2018        |  |  |  |  |  |  |
| 5                  | 0.591  | 2015        | 0.750        | 2015         | 0.441 | 2020        |  |  |  |  |  |  |
|                    |        | HadS        | ST3 (Hadley/ | СRU, море)   |       |             |  |  |  |  |  |  |
| 1                  | 0.441  | 2016        | 0.580        | 2020         | 0.374 | 2016        |  |  |  |  |  |  |
| 2                  | 0.425  | 2020        | 0.489        | 2016         | 0.323 | 2017        |  |  |  |  |  |  |
| 3                  | 0.365  | 2017        | 0.425        | 2017         | 0.303 | 2019        |  |  |  |  |  |  |
| 4                  | 0.348  | 2019        | 0.403        | 2015         | 0.284 | 2020        |  |  |  |  |  |  |
| 5                  | 0.319  | 2015        | 0.397        | 2019         | 0.278 | 1998        |  |  |  |  |  |  |

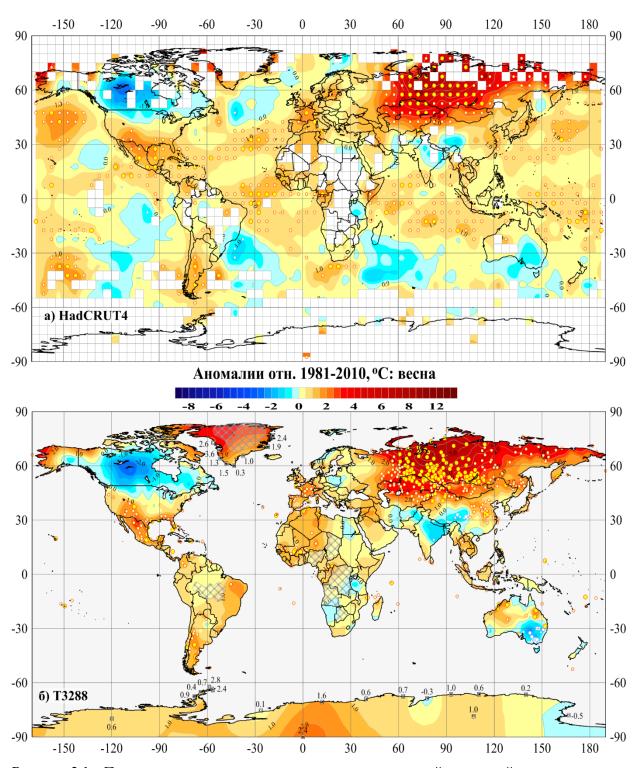
Следует отметить, что сезон был исключительно теплым не только при глобальном рассмотрении. Это подтверждается значениями сезонной аномалии температуры в крупных регионах мира (табл. 2.2), которые почти все превысили уровень 90-го процентиля (кроме значений для Северной Америки, Австралии, Антарктиды и Антарктического пояса), а многие оказались рекордно высокими. В числе последних – пояс умеренных широт Северного полушария (в целом, и в каждом из двух его океанических секторов), евразийский континент (в целом и отдельно на территории Азии) и континент Южной Америки.

Второй яркой особенностью температурного режима этой весны следует, повидимому, считать существенные отрицательные аномалии температуры отдельных весенних месяцев в ряде регионов (средние по территории региона значения температуры ниже уровня 30-го, и даже 20-го, процентилей). К таким регионам относятся: в марте - Антарктида и Антарктический пояс в целом (соответственно, аномалия V=-1.4, -1.3°C, вероятность непревышения F=16, 28%); в мае – Австралия (V=-1.3°C, F=20%). К этой же группе можно отнести и Северную Америку в апреле (V=-0.28°C, V=-0.28°C, V=-

**Таблица 2.2** - Пространственно осредненные значения аномалии (°C) приземной температуры и их вероятности непревышения на территории Земного шара весной 2020 г., в среднем за сезон и в каждом из месяцев

| Dorwon                       | Bed                 | сна  | Ma         | арт      | Апр       | ель | Ma     | ай  |
|------------------------------|---------------------|------|------------|----------|-----------|-----|--------|-----|
| Регион                       | vT <sub>III-V</sub> | F%   | $vT_{III}$ | F%       | $vT_{IV}$ | F%  | $vT_V$ | F%  |
|                              |                     | HadC | RUT4 (c    | уша+мо   | pe)       |     |        |     |
| Земной шар                   | 0.55                | 99   | 0.69       | 99       | 0.50      | 99  | 0.44   | 100 |
| Северное полушарие           | 0.79                | 99   | 1.00       | 99       | 0.69      | 99  | 0.69   | 100 |
| Южное полушарие              | 0.30                | 96   | 0.39       | 99       | 0.32      | 97  | 0.19   | 93  |
| Атлантика (15-70N)           | 0.50                | 100  | 0.54       | 100      | 0.60      | 100 | 0.40   | 96  |
| Тихий океан (20-65N)         | 0.73                | 100  | 0.67       | 100      | 0.62      | 99  | 0.89   | 100 |
| Арктический пояс (65-90N)    | 2.04                | 98   | 1.99       | 94       | 2.56      | 98  | 1.50   | 98  |
| Умеренный пояс СП (25-65N)   | 0.92                | 100  | 1.31       | 100      | 0.69      | 98  | 0.76   | 99  |
| Тропики (25S-25N)            | 0.50                | 99   | 0.56       | 99       | 0.54      | 98  | 0.43   | 97  |
| Умеренный пояс ЮП (65-25S)   | 0.19                | 94   | 0.27       | 95       | 0.16      | 90  | 0.12   | 85  |
| Антарктический пояс (90-65S) | 0.53                | 81   | -0.43      | 28       | 1.31      | 92  | 1.24   | 80  |
|                              |                     | IG   | CE-T328    | 8 (суша) | )         |     |        |     |
| Земной шар                   | 0.96                | 99   | 1.35       | 99       | 0.81      | 98  | 0.72   | 100 |
| Северное полушарие           | 1.16                | 99   | 1.64       | 99       | 0.89      | 97  | 0.96   | 100 |
| Южное полушарие              | 0.43                | 96   | 0.55       | 97       | 0.62      | 98  | 0.15   | 86  |
| Северная Америка             | 0.33                | 83   | 0.93       | 92       | -0.28     | 61  | 0.30   | 81  |
| Евразия                      | 1.68                | 100  | 2.48       | 99       | 1.38      | 95  | 1.21   | 99  |
| Европа                       | 1.20                | 94   | 3.18       | 100      | 0.45      | 75  | -0.04  | 63  |
| Азия                         | 1.81                | 100  | 2.24       | 97       | 1.68      | 99  | 1.56   | 100 |
| Южная Америка                | 0.83                | 100  | 1.64       | 100      | 0.55      | 95  | 0.32   | 80  |
| Африка                       | 0.74                | 95   | 0.71       | 94       | 0.74      | 96  | 0.89   | 97  |
| Австралия                    | -0.04               | 72   | 0.19       | 65       | 0.99      | 95  | -1.30  | 20  |
| Антарктида                   | 0.74                | 86   | -1.41      | 16       | 1.72      | 91  | 1.90   | 91  |
|                              |                     | CI   | RUTEM4     | 1 (cywa) |           |     |        |     |
| Земной шар                   | 0.89                | 99   | 1.26       | 99       | 0.75      | 98  | 0.67   | 99  |
| Северное полушарие           | 1.12                | 99   | 1.61       | 99       | 0.83      | 97  | 0.92   | 100 |
| Южное полушарие              | 0.44                | 96   | 0.55       | 98       | 0.61      | 98  | 0.17   | 87  |

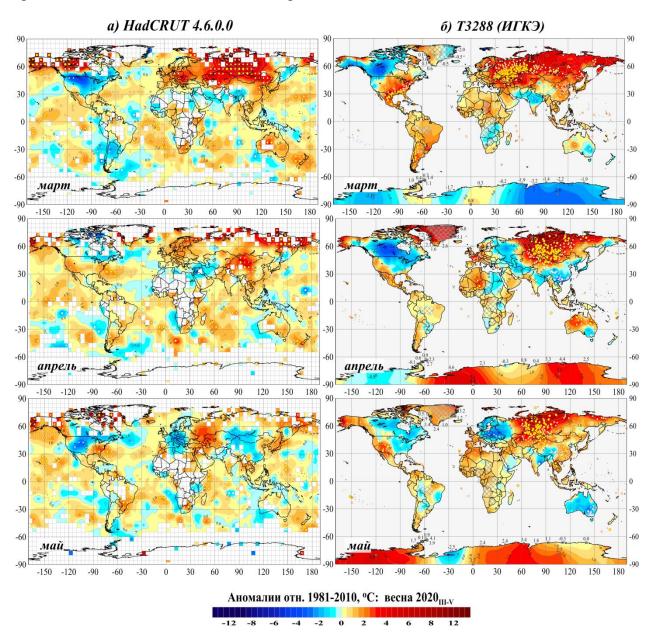
Условные обозначения.


- 1. vT,  ${}^{\circ}$ С наблюденная аномалия весной 2020 года (базовый период 1981-2010 гг.);
- 2. F% –значение эмпирической функции распределения  $F=\operatorname{prob}(X \leq vT_{2020})$  по данным за 1911-2020 гг. (вероятность непревышения)
- 3. Красным шрифтом выделены абсолютные максимумы значения, наблюдавшиеся в 2020 г. и превысившие все значения ряда за 1911-2020 гг.
  - 4. Синим шрифтом выделены отрицательные аномалии.

**Таблица 2.3** – Количество локальных экстремумов на территории Земного шара весной 2020 г по данным массивов HadCRUT4 и T3288 (все значения приведены в процентах от NN)

|            | NN -     |          | Число за   | начений в к | аждой кате    | гории (в %  | от NN)     |       |
|------------|----------|----------|------------|-------------|---------------|-------------|------------|-------|
| Регион     | число    | Аномалии |            |             |               | тремумы     | Абсол      | ютные |
| ТСГИОН     | станций/ | го)      | н. 1981-20 | 10)         | холода        | /тепла      | экстремумы |       |
|            | боксов   | V < 0    | V=0        | V > 0       | $X <= P_{05}$ | $X>=P_{95}$ | X=min      | X=max |
|            |          |          | I          | HadCRUT4    | (суша+мо      | pe)         |            |       |
| ЗШ         | 1692     | 17.4     | 3.4        | 79.2        | 0.4           | 26.5        | -          | 6.0   |
| СП         | 950      | 11.9     | 2.1        | 86.0        | 0.2           | 32.0        | -          | 7.8   |
| ЮП         | 742      | 24.5     | 5.0        | 70.5        | 0.5           | 19.4        | -          | 3.6   |
| 90-65N     | 92       | 14.1     | 3.3        | 82.6        | -             | 26.1        | -          | 8.7   |
| 65-25N     | 537      | 14.9     | 1.9        | 83.2        | 0.2           | 31.7        | -          | 7.6   |
| 25S-25N    | 646      | 9.6      | 3.7        | 86.7        | 0.5           | 33.1        | -          | 6.7   |
| 25-65S     | 401      | 34.4     | 5.0        | 60.6        | 0.5           | 9.7         | -          | 2.2   |
| 65-90S     | 16       | 12.5     | -          | 87.5        | -             | 6.3         | -          | -     |
|            |          |          |            | Т3288 (то   | лько суша     | )           |            |       |
| ЗШ         | 2293     | 16.7     | 2.4        | 80.9        | 1.4           | 25.2        | 0.8        | 8.0   |
| СП         | 1911     | 13.3     | 1.9        | 84.8        | 0.4           | 26.7        | 0.2        | 8.5   |
| ЮП         | 383      | 33.7     | 4.7        | 61.6        | 6.0           | 17.8        | 3.9        | 5.5   |
| С. Америка | 308      | 33.1     | 2.9        | 64.0        | -             | 17.2        | -          | 3.9   |
| Евразия    | 1329     | 10.5     | 1.5        | 88.0        | 0.6           | 27.7        | 0.2        | 9.6   |
| Ю. Америка | 108      | 4.6      | 4.6        | 90.7        | -             | 25.0        | -          | 6.5   |
| Африка     | 135      | 5.9      | 2.2        | 91.9        | -             | 34.8        | -          | 9.6   |
| Австралия  | 156      | 64.7     | 7.1        | 28.2        | 14.1          | 6.4         | 9.0        | 4.5   |
| Антарктида | 18       | 5.6      | -          | 94.4        | -             | -           | -          |       |
| Европа     | 460      | 10.0     | 2.4        | 87.6        | -             | 17.6        | -          | 1.3   |
| Азия       | 876      | 10.6     | 1.0        | 88.4        | 0.9           | 33.1        | 0.3        | 13.9  |

Пространственное распределение аномалий температуры весной 2020 г. (рис. 2.1, табл. 2.3) также показывает преобладание положительных аномалий, как в целом на земном шаре (81% всех станционных данных и 72% данных в боксах), так и на всех континентах (кроме Австралии) и во всех широтных поясах. Так, крупные положительные аномалии охватили практически всю бореальную Азию (аномалии до 8.7°С в нижнем течении Енисея). Менее интенсивные, но обширные аномалии (до +2.5; +3°С) отмечены на территории Западной Европы Центральной и Южной Америки, Индонезии и Новой Зеландии, а также в Атлантике (20S – 40N), Тихом и Индийском (20S-10N) океанах. При этом четверть всех значений (25% станций, 21% боксов) - 5%-е экстремумы тепла (бОльшая часть в Северном полушарии), и среди них менее 10% - абсолютные максимумы (в основном, в Азии и Африке). В южной полярной области (Антарктика) абсолютных экстремумов не наблюдалось.


Крупные отрицательные аномалии (до -3.5°С) сосредоточены на юге Австралии: доля отрицательных аномалий - 65%, в том числе 14% - 5%-е экстремумы холода, 9% - абсолютные минимумы. Аномалии до -2.5°С (притом - без экстремумов) отмечены в северных умеренных широтах Америки (вся материковая территория Канады) и Атлантики, на приграничной территории Индии и Китая, а также в южных широтах Атлантики (70S-20S), на юго-востоке Тихого и на юге Индийского океанов.



**Рисунок 2.1** — Пространственное распределение сезонных аномалий приземной температуры на территории Земного шара весной  $2020 \, \text{г.:}\ a)$  по сеточным данным Hadley/CRU: HadCRUT4 (суша+море), б) по станционным данным ИГКЭ: Т3288 (только суша).

Аномалии приведены в отклонениях от средних за 1981-2010 гг. Кружками белого (минимумы) и желтого (максимумы) цвета указано положение боксов/станций с рекордными значениями аномалий. Значками меньшего размера указано положение 5%-х экстремумов того же знака. Для станций Антарктиды и Гренландии непосредственно в точках расположения станций показаны числовые значения наблюдаемых аномалий. Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений.

**Внутрисезонные особенности** температурного режима в течение весны 2020 г. можно проследить по изменению от месяца к месяцу наблюдаемых локальных оценок, их пространственных и частотных распределений и региональных обобщений (рис. 2.2, 2.2). В частности, дополнительная информация о частотных распределениях экстремальных среднемесячных аномалий в каждом из регионов (табл. 2.4) хорошо согласуется с представленными выше ежемесячными региональными оценками.

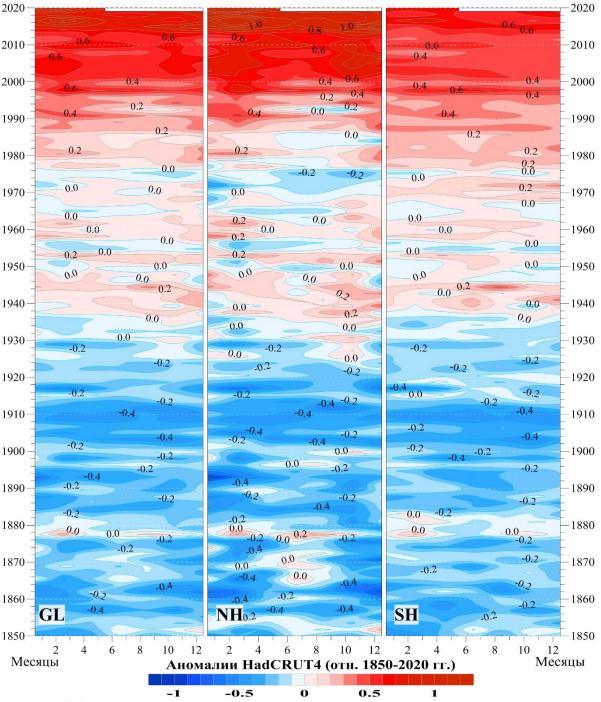


**Рисунок 2.2** — Пространственное распределение среднемесячных аномалий приземной температуры на территории Земного шара весной 2020 г. (март, апрель, май). Условные обозначения см. рисунок 2.1

Межмесячные различия в характере температурных условий текущего весеннего сезона связаны, главным образом, с локализацией и интенсивностью аномалий температуры во внетропических широтах обоих полушарий: в Северном полушарии – в основном, на континентах, в Южном – еще и на акваториях океанов.

Так, в Северном полушарии в марте отрицательные аномалии отмечены только в североамериканском секторе умеренных широт (восточная территория Канады и небольшие смежные акватории Тихого океана и Атлантики), тогда как практически вся Евразия (севернее 30-й параллели) и вся Центральная Америка охвачены крупными положительными аномалиями с многочисленными локальными экстремумами и температурными рекордами. В апреле область отрицательных аномалий включает уже всю территорию Канады и Соединенных Штатов и тянется через Атлантику и Норвежское море в Восточную Европу и далее, в Среднюю и Юго-восточную Азию. В мае отрицательные аномалии на территории Канады и Северной Атлантики стали слабее, но оформился замкнутый очаг холода в Восточной Европе, включивший также и акваторию Норвежского моря, и Скандинавию. Небольшие области отрицательных аномалий наблюдались также на границе Индии и Китая и в Охотском море. Вся остальная территория Северного полушария в мае занята положительными аномалиями с многочисленными, в том числе обширными областями 5%-х экстремумов тепла. Среди них акватории всех трех океанов (кроме уже описанной «холодной» части Северной Атлантики), вся азиатская территория России, Монголии и Казахстана, Западная Европа, прибрежные области на севере и западе Африки, Аляска и восточное побережье Северной Америки.

**В Южном полушарии** условия в течение этих трех месяцев в целом были более устойчивы. Области отрицательных аномалий сохранялись во всех южных океанах на протяжении всего сезона (с некоторыми модификациями их конфигурации), и при этом в марте ими была покрыта бОльшая часть Антарктиды, в мае — вся Австралия, а в Южной Америке и Африке уменьшилась площадь и заметно снизилась интенсивность положительных аномалий. Соответственно, в Европе, Азии и Северной Америке доля 5%-х экстремумов тепла уменьшилось от 26-29% в марте до 2.6-10.3-1.3 % в мае, а в Южной Америке — от 60 до 3.6% (подробнее см. табл. 2.4).


**Таблица 2.4** - Доля 5%-х экстремумов холода/тепла в крупных регионах Земного шара в отдельные месяцы весеннего сезона 2020 гг. (Т3288, *молько суща*!)

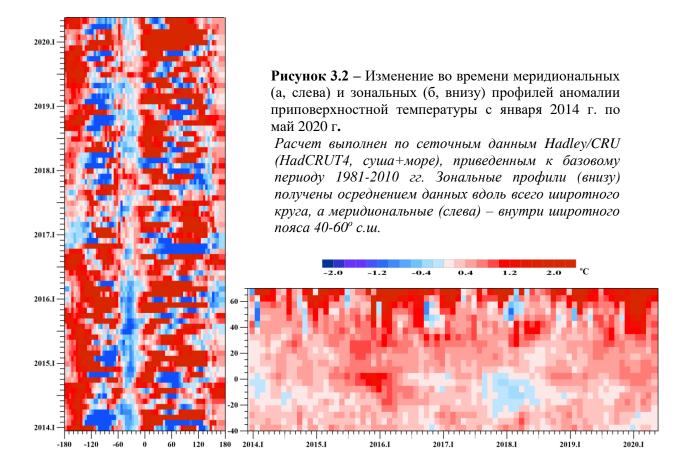
| Регион             | Всего<br>станций | Март               | Март 2020 |                    | ь 2020 | Май 2020           |                    |  |
|--------------------|------------------|--------------------|-----------|--------------------|--------|--------------------|--------------------|--|
| ТСІЙОН             | NN               | X<=P <sub>05</sub> | X>=P95    | X<=P <sub>05</sub> | X>=P95 | X<=P <sub>05</sub> | X>=P <sub>95</sub> |  |
| Земной шар         | 2261             | 0.2                | 27.5      | 2.2                | 19.0   | 2.4                | 20.6               |  |
| Северное полушарие | 1957             | 0.1                | 26.5      | 2.3                | 19.6   | 1.2                | 23.3               |  |
| Южное полушарие    | 305              | 1.3                | 33.4      | 1.3                | 15.8   | 7.9                | 8.4                |  |
| Северная Америка   | 309              | -                  | 26.5      | 0.7                | 8.8    | 0.3                | 1.3                |  |
| Евразия            | 1352             | 0.1                | 26.5      | 3.0                | 20.6   | 0.3                | 7.7                |  |
| Южная Америка      | 149              | -                  | 59.6      | -                  | 9.2    | -                  | 3.6                |  |
| Африка             | 147              | -                  | 14.8      | 0.8                | 32.3   | -                  | 10.4               |  |
| Австралия          | 75               | 2.6                | 6.4       | 3.2                | 16.0   | 8.0                | 0.6                |  |
| Антарктида         | 18               | 5.6                | -         | -                  | 11.1   | -                  | -                  |  |
| Европа             | 453              | -                  | 28.9      | -                  | 15.4   | 0.2                | 2.6                |  |
| Азия               | 906              | 0.1                | 25.6      | 4.5                | 23.3   | 0.3                | 10.3               |  |
| Арктика, 65-90с.ш. | 131              | -                  | 11.5      | -                  | 24.6   | -                  | 12.7               |  |

*Примечание*. Процентное содержание экстремумов рассчитано по всем доступным станционным данным соответствующего месяца/сезона в рассматриваемом регионе (см. NN). Значения 5-го 95-го процентилей ( $P_{05}$ ,  $P_{95}$ ) рассчитаны для каждого календарного месяца и каждой станции по данным за 1911-2020 гг.

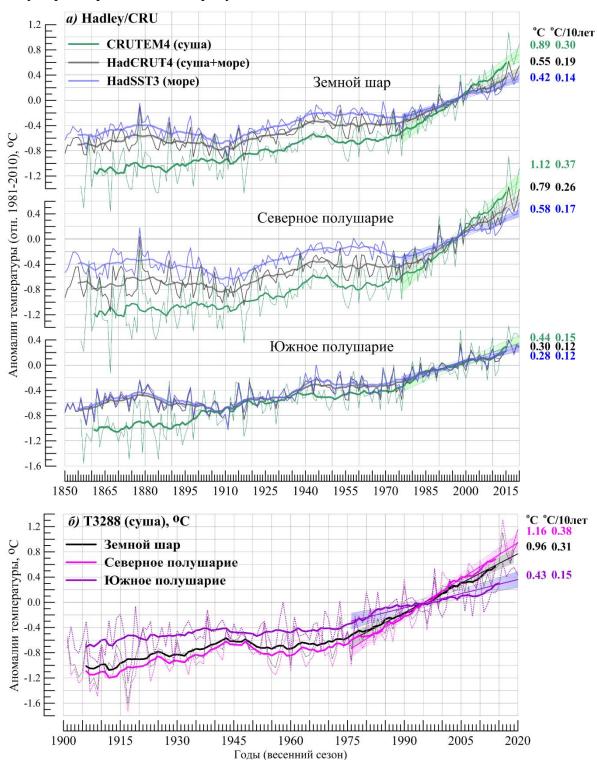
# 3. КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ, 1850-2020 гг. (весенний сезон)

**Многолетние и межмесячные изменения глобальной температуры.** На рис. 3.1 представлены межгодовые (по вертикали) и межмесячные (по горизонтали) изменения глобально осредненных аномалий приповерхностной температуры (для Земного шара и полушарий) на протяжении всего периода инструментальных наблюдений (с 1850 г.). Аномалии рассчитаны относительно среднего за весь период (1850-2020 гг.).




**Рисунок 3.1** — Изменение аномалий средней месячной приповерхностной температуры (°C), осредненных по территории Земного шара (GL), Северного (NH) и Южного (SH) полушарий, в течение периода с января 1850 по май 2020 гг. Аномалии выражены как отклонения от средней за 1850-2020 гг. Использованы данные Hadley/CRU: HadCRUT4, UK

На рис. 3.1 хорошо прослеживаются все климатические особенности представленного периода: похолодание в начале 20-го столетия, арктическое потепление 1940-х и современное глобальное потепление, ставшее особенно активным с середины 1990-х. Наиболее ярко оно проявляется в Северном полушарии и заметно усилилось в последние годы — примерно с середины 2014 г. (в обоих полушариях).


**Широтно-долготные разрезы.** На рисунке 3.2 можно проследить меридиональные и зональные особенности температурного режима последних лет (2014-2020 гг.) в динамике, от месяца к месяцу (в том числе, внутри весеннего сезона 2020).

Зональный разрез (рис. 3.2а) характеризует узкий пояс умеренных широт Северного полушария (40-60°с.ш.), начиная от восточного сектора Тихого океана у берегов Северной Америки, далее — территория Канады—США, затем — Северная Атлантика, Евразия и западный сектор Тихого океана. В целом, на протяжении всего периода 2014-2020 гг., бросается в глаза устойчиво холодная Атлантика и теплый Тихий океан (особенно у берегов Америки). Четко видна смена этого режима противоположным осенью 2016, зимой 2017/2018 и летом 2019 гг. (только в Атлантике). Тогда же, в конце 2016, смена термических режимов произошла и в умеренных широтах обоих северных континентов: Америка стала более «холодной», Европа — более «теплой». В 2020 г. на рисунке хорошо прослеживаются: теплая зима на обоих континентах (особенно теплая в Евразии), холодная весна в американском секторе и в Европе и шестой месяц подряд крупные положительные аномалии в Сибири.

С середины 2018 г. зональные профили (рис. 3.26) иллюстрируют абсолютное доминирование положительных аномалий практически на всей территории земного шара (с явным усилением их интенсивности в северных широтах).



**Временные ряды глобально осредненной температуры.** Интегральную характеристику наблюдаемых крупномасштабных изменений приземной температуры дают глобально осредненные временные ряды для территории Земного шара и обоих полушарий, приведенные на рисунке 3.3.



**Рисунок 3.3** — Временные ряды сезонных аномалий приземной температуры (весна), осредненных по территории Земного шара, Северного и Южного полушарий: а) по данным Hadley/CRU, 1850-2020 гг.: HadCRUT4 (суша+море), CRUTEM4 (суша), HadSST3 (море); б) по данным ИГКЭ, 1901-2020 гг.: T3288 (суша).

Для всех рядов показан ход 11-летних скользящих средних и линейный тренд за 1976-2020 гг. с 95% доверительным интервалом. Справа приведены числовые значения сезонных аномалий в 2020 г. и значения коэффициентов линейного тренда за 1976-2020 гг. (°C/10лет, весна).

Коэффициенты линейного тренда приведены в таблице 3.1 для всех рядов (по всем наборам данных, для Земного шара и обоих полушарий) за 1976-2020 гг. (период современного глобального потепления) и 1921-2020 гг. (последнее 100-летие).

**Таблица 3.1** – Коэффициенты линейного тренда ( ${}^{o}C/10$  лет) глобальных временных рядов приземной температуры за 1976-2020 гг. и 1921-2020 гг., в среднем за весенний сезон и по месяцам

| Darway             |       | 1976  | -2020  |          | 1921-2020 |       |        |       |  |
|--------------------|-------|-------|--------|----------|-----------|-------|--------|-------|--|
| Регион             | Весна | март  | апрель | май      | Весна     | март  | апрель | май   |  |
|                    |       |       | HadCRU | UT4 (cyu | іа+море)  |       |        |       |  |
| Земной шар         | 0.187 | 0.202 | 0.190  | 0.170    | 0.092     | 0.103 | 0.090  | 0.084 |  |
| Северное полушарие | 0.255 | 0.283 | 0.251  | 0.231    | 0.105     | 0.125 | 0.102  | 0.089 |  |
| Южное полушарие    | 0.120 | 0.120 | 0.130  | 0.109    | 0.079     | 0.081 | 0.078  | 0.080 |  |
|                    |       |       | T3288  | В-ИГКЭ ( | (суша)    |       |        |       |  |
| Земной шар         | 0.312 | 0.365 | 0.307  | 0.258    | 0.150     | 0.180 | 0.147  | 0.123 |  |
| Северное полушарие | 0.381 | 0.450 | 0.369  | 0.317    | 0.172     | 0.215 | 0.166  | 0.135 |  |
| Южное полушарие    | 0.150 | 0.162 | 0.165  | 0.122    | 0.090     | 0.081 | 0.097  | 0.092 |  |
|                    |       |       | CRU    | TEM4 (c  | ywa)      |       |        |       |  |
| Земной шар         | 0.297 | 0.347 | 0.295  | 0.249    | 0.142     | 0.166 | 0.140  | 0.119 |  |
| Северное полушарие | 0.371 | 0.445 | 0.360  | 0.310    | 0.165     | 0.206 | 0.162  | 0.128 |  |
| Южное полушарие    | 0.148 | 0.153 | 0.164  | 0.128    | 0.095     | 0.087 | 0.097  | 0.101 |  |
|                    |       |       | Нас    | lSST3 (м | оре)      |       |        |       |  |
| Земной шар         | 0.140 | 0.129 | 0.148  | 0.145    | 0.067     | 0.068 | 0.066  | 0.068 |  |
| Северное полушарие | 0.167 | 0.144 | 0.172  | 0.185    | 0.060     | 0.057 | 0.061  | 0.063 |  |
| Южное полушарие    | 0.116 | 0.117 | 0.124  | 0.107    | 0.076     | 0.081 | 0.073  | 0.075 |  |

Примечание. Все оценки в таблице статистически значимы на 1%-м уровне

В таблице 3.2 приведены показатели  $k_1 - k_3$ , сравнивающие оценки коэффициентов тренда в разных подгруппах данных (см. расшифровку в столбце «показатель»). Эти показатели количественно уточняют выводы, основанные на визуальном сопоставлении глобальных временных рядов (рис. 3.3) и соответствующих им оценок трендов (табл. 3.1).

**Таблица 3.2** – Сравнение оценок скорости глобального потепления (у поверхности), полученных по данным разных источников и категорий (в среднем за весенний сезон)

|                  | Показатель                                      |       | 1976-2020 |        |           | 1921-2020 |        |  |  |
|------------------|-------------------------------------------------|-------|-----------|--------|-----------|-----------|--------|--|--|
| 1 <sub>c</sub> . |                                                 | 3Ш    | СП        | ЮП     | ЗШ        | СП        | ЮП     |  |  |
| k <sub>1</sub>   | $b_{T3288} / b_{HadSST}$                        | 2.23  | 2.28      | 1.29   | 2.24      | 2.87      | 1.18   |  |  |
|                  | $b_{CRUTEM}$ / $b_{HadSST}$                     | 2.12  | 2.22      | 1.28   | 2.12      | 2.75      | 1.25   |  |  |
|                  | <i>b</i> <sub>СП</sub> / <i>b</i> <sub>ЮП</sub> |       | 1976-2020 |        | 1921-2020 |           |        |  |  |
| $\mathbf{k}_2$   |                                                 | T3288 | CRUTEM    | HadSST | T3288     | CRUTEM    | HadSST |  |  |
|                  |                                                 | 2.54  | 2.51      | 1.44   | 1.91      | 1.74      | 0.79   |  |  |
|                  |                                                 |       | СП        |        | ЮП        |           |        |  |  |
| $\mathbf{k}_3$   | $b_{1976\text{-}2020}$ / $b_{1920\text{-}2020}$ | T3288 | CRUTEM    | HadSST | T3288     | CRUTEM    | HadSST |  |  |
|                  |                                                 | 2.22  | 2.25      | 2.78   | 1.67      | 1.56      | 1.53   |  |  |

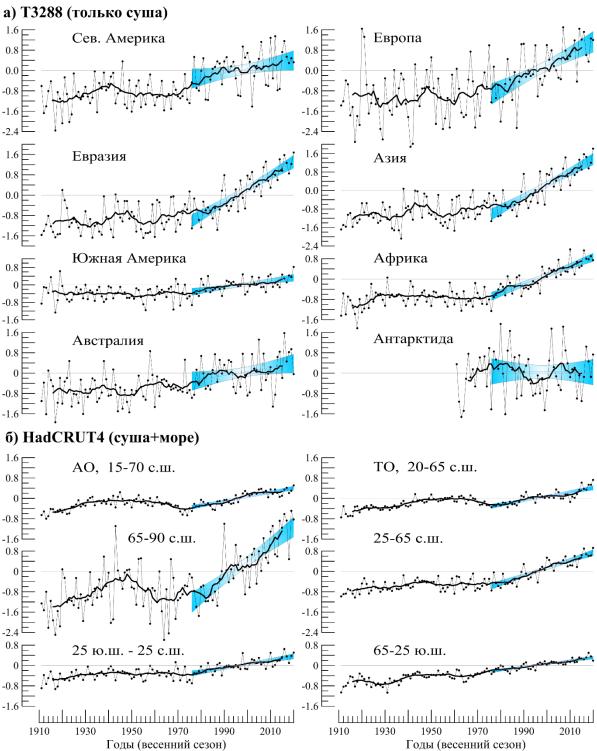
Из оценок таблицы 3.2 можно сделать следующие выводы.

- Во всех рассмотренных случаях (кроме  $k_2$ =0.79 в случае HadSST3, 1921-2020) оценки всех трех показателей  $k_1$ - $k_3$  больше 1. Это значит, что, как правило, глобальное потепление *над сушей протекает быстрее*, чем над океанами, в Северном полушарии активнее, чем в Южном и в последние 40-50 лет ускорилось в сравнении с минувшим столетием в целом.
- Единственное полученное выше исключение:  $k_2$ =0.79 в случае HadSST3, 1921-2020 указывает на очень существенную деталь: в течение 1921-2020 гг. потепление весенних сезонов на поверхности океанов протекало заметно активнее не в Северном полушарии, а в Южном! Это может означать, по-видимому, что и глобальное потепление в целом началось до 1975 г. с океанов Южного полушария! Однако этот вывод требует дополнительного анализа, с привлечением оценок для других сезонов.
- *В рамках одного полушария коэффициент ускорения* современного потепления относительно 100-летнего примерно одинаков для континентов и океанов, но в Северном полушарии он примерно в полтора раза выше, чем в Южном.

## 4. ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2020 гг. (весенний сезон)

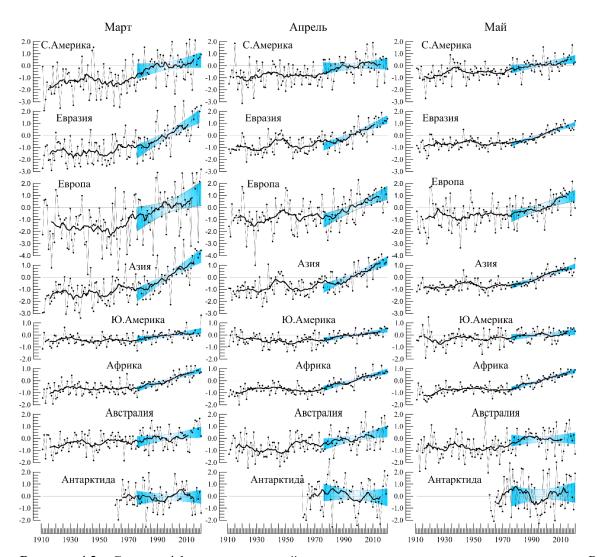
Представленные ниже временные ряды (рис. 4.1, 4.2, 4.3) рассчитаны по методике ИГКЭ, по сеточным данным HadCRUT4 (для пяти широтных поясов и северных частей Атлантического и Тихого океанов) и по данным станционных наблюдений Т3288 (для шести континентов плюс отдельно для Европы и Азии). Данные до 1911 г. не приводятся, т.к. представляются недостаточно полными и надежными (особенно над океанами). На всех временных рядах показаны тренды за период 1976-2020 гг., условно принятый за период современного глобального потепления. Числовые оценки трендов для всех регионов приведены в табл. 4.1.

**Таблица 4.1** – Коэффициенты линейного тренда ( ${}^{o}C/10$  лет) регионально осредненных аномалий приземной температуры весеннего сезона за 1976-2020 гг. (в целом за сезон и по месяцам)

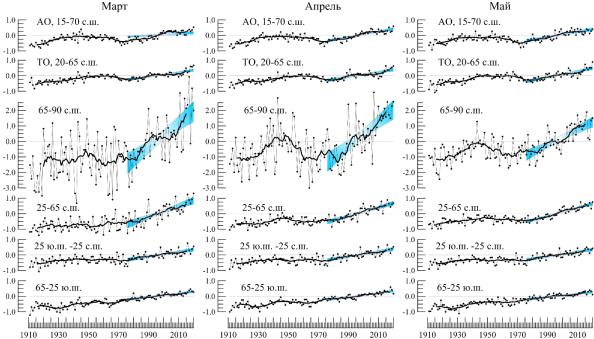

| Регион                       | Весна        | Март     | Апрель | Май    |
|------------------------------|--------------|----------|--------|--------|
| Н                            | ladCRUT4 (cy | ша+море) |        |        |
| Атлантика (15-70N)           | 0.171        | 0.168    | 0.179  | 0.166  |
| Тихий океан (20-65N)         | 0.164        | 0.142    | 0.156  | 0.194  |
| Арктический пояс (65-90N)    | 0.673        | 0.762    | 0.771  | 0.488  |
| Умеренный пояс СП (25-65N)   | 0.299        | 0.354    | 0.276  | 0.264  |
| Тропики (25S-25N)            | 0.152        | 0.148    | 0.161  | 0.149  |
| Умеренный пояс ЮП (65-25S)   | 0.122        | 0.116    | 0.130  | 0.110  |
| Антарктический пояс (90-65S) | -0.005       | -0.066   | -0.053 | 0.110  |
|                              | Т3288 (сущ   | ıa)      |        |        |
| Северная Америка             | *0.163       | 0.209    | 0.087  | *0.185 |
| Евразия                      | 0.528        | 0.682    | 0.514  | 0.386  |
| Европа                       | 0.467        | *0.476   | 0.529  | 0.390  |
| Азия                         | 0.543        | 0.730    | 0.518  | 0.382  |
| Южная Америка                | 0.146        | *0.158   | 0.177  | *0.100 |
| Африка                       | 0.349        | 0.356    | 0.322  | 0.338  |
| Австралия                    | *0.157       | **0.182  | *0.245 | 0.043  |
| Антарктида                   | -0.007       | 0.020    | -0.091 | 0.068  |

Усл обозначения: \*  $\alpha \le 5\%$ ; \*\*  $\alpha \le 10\%$ ; серая заливка -  $\alpha \ge 10\%$  где  $\alpha$  – уровень значимости. Оценки, статистически значимые на 1%-уровне, приведены без выделения

По данным HadCRUT4 (табл. 4.1, суша+море) во всех регионах, кроме Антарктического, оценки указывают на потепление весенних сезонов в течение 1976-2020 гг., статистически значимое на 1%-м уровне. Наиболее интенсивно потепление происходит в Арктическом поясе (сезонный тренд +0.673°C/10 лет, в марте +0.762°C/10 лет). В Антарктике во все месяцы и в целом за сезон гипотеза о наличии ненулевого тренда отвергается с вероятностью 91% (тренд ложный).


С той же доверительной вероятностью (91%) гипотеза о ненулевом тренде отвергается и по данным Т3288 для Антарктиды (табл. 4.1, суша). Судя по остальным оценкам для континентов, тенденция к потеплению уверенно (на 1%-уровне значимости) подтверждается лишь в среднем по территории Азии (+0.543°C/10 лет) и Африки (0.35°C/10 лет). В Евразии «уверенный» тренд (+0.528°C/10 лет) формируется, в значительной мере, за счет Азиатской территории.

Более детально проследить особенности многолетнего хода приземной температуры в каждом регионе и оценить современные тенденции их изменений можно по временным рядам на рис. 4.1-4.3.




**Рисунок 4.1** – Временные ряды пространственно осредненных аномалий приземной температуры весеннего сезона для континентов (а), северных частей Атлантического и Тихого океанов (б, вверху) и основных широтных поясов земного шара (б, внизу).

Расчеты выполнены по методике ИГКЭ по данным Т3288 (для континентов, а) и HadCRUT4 (для океанов и широтных поясов, б). Аномалии приведены в отклонениях от средних за 1981—2010 гг. Сглаженные кривые (жирная линия) получены 11-летним скользящим осреднением. Показан линейный тренд за 1976-2020 гг. с 95%-м доверительным интервалом (голубая заливка).



**Рисунок 4.2** – См. рис. 4.1. но для аномалий весенних месяцев и только для континентов. *Расчеты* выполнены по методике и данным ИГКЭ. Использован массив станционных данных T3288.

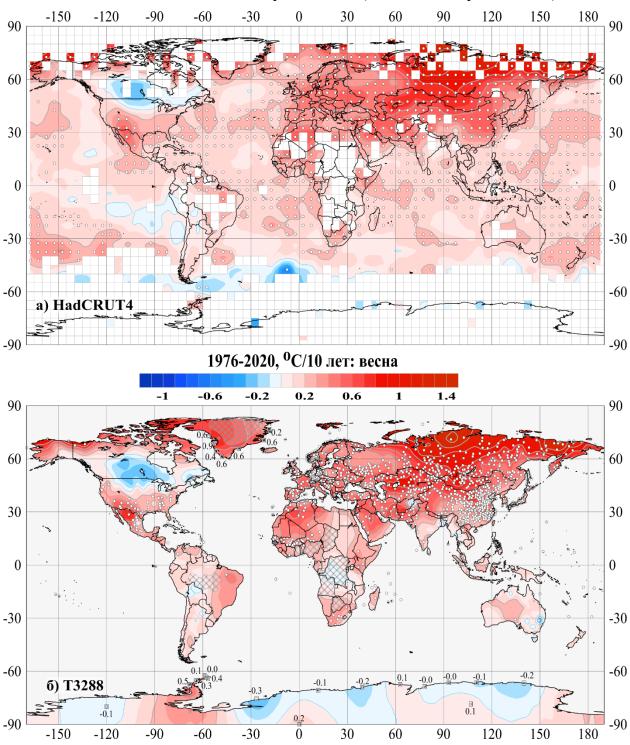


**Рисунок 4.3** — См. рис. 4.2., но для океанов и широтных поясов земного шара. *Использованы сеточные данные Hadley/CRU (HadCRUT4, суща+море)*. *Расчеты выполнены по методике ИГКЭ*.

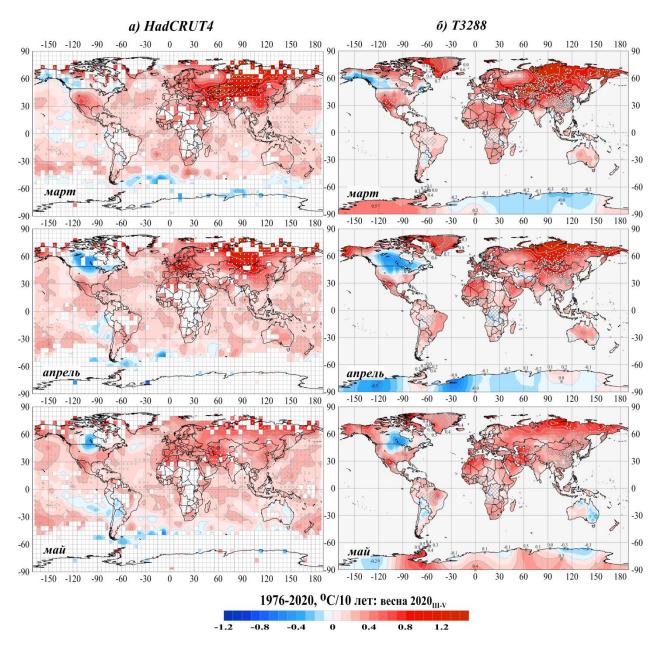
# **5. ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ** ИЗМЕНЕНИЙ КЛИМАТА, 1976-2020 гг. (весенний сезон)

Ниже приведены географические распределения коэффициентов линейного тренда аномалий приповерхностной температуры за 1976-2020 гг. для весеннего сезона (рис. 5.1) и каждого весеннего месяца (рис. 5.2). Использованы данные наблюдений на 2264 станциях (массив Т3288) и в центрах 1626 боксов (массив HadCRUT4), для которых своевременно поступили данные за 2020<sub>III-V</sub>. В таблице 5.1 приведено их количественное распределение в зависимости от географического региона, направленности тренда и его уровня значимости. В таблице указано реальное число станций/боксов, учтенных в расчетах в каждой конкретной выборке. Аналогичные оценки для отдельных месяцев приведены в таблице 5.2.

**Таблица 5.1** – Распределение локальных оценок тренда за 1976-2020 гг. (в % от N) в зависимости от знака коэффициента тренда  $\boldsymbol{b}$  и уровня значимости  $\boldsymbol{\alpha}$ 


| Регион     | N    |       | b < 0    |          | b = 0  |       | b > 0   |         |
|------------|------|-------|----------|----------|--------|-------|---------|---------|
| ТСГИОН     | 1    | всего | α<=0.01  | α<=0.05  | b = 0  | всего | α<=0.01 | α<=0.05 |
|            |      |       | HadCRU   | Т4 (суша | +море) |       |         |         |
| 3Ш         | 1626 | 6.9   | 0.2      | 0.3      | 0.8    | 92.3  | 51.8    | 65.8    |
| СП         | 944  | 2.9   |          | -        | 0.4    | 96.7  | 62.2    | 76.2    |
| ЮП         | 682  | 12.5  | 0.4      | 0.7      | 1.3    | 86.2  | 37.5    | 51.5    |
| 90-65N     | 88   | 1.1   | -        | -        | -      | 98.9  | 80.7    | 87.5    |
| 65-25N     | 536  | 4.1   | -        | -        | 0.4    | 95.5  | 63.1    | 76.3    |
| 25S-25N    | 645  | 4.7   | -        | -        | 1.2    | 94.1  | 52.9    | 68.1    |
| 25-65S     | 343  | 14.6  | 0.9      | 1.5      | 0.9    | 84.5  | 26.5    | 41.7    |
| 65-90N     | 14   | 64.3  | -        | -        | -      | 35.7  | 14.3    | 14.3    |
|            |      |       | T3288 (  | только с | уша)   |       |         |         |
| ЗШ         | 2264 | 7.6   | 0.2      | 0.4      | 0.6    | 91.8  | 62.5    | 72.9    |
| СП         | 1896 | 5.0   | 0.2      | 0.3      | 0.2    | 94.8  | 70.6    | 80.7    |
| ЮП         | 369  | 20.9  | 0.3      | 0.5      | 3.0    | 76.2  | 21.1    | 33.1    |
| С. Америка | 307  | 21.8  | 0.7      | 1.0      | 0.3    | 77.9  | 23.8    | 34.2    |
| Евразия    | 1326 | 1.4   | 0.1      | 0.2      | 0.1    | 98.5  | 81.4    | 91.6    |
| Ю. Америка | 107  | 15.9  | 0.9      | 0.9      | -      | 84.1  | 12.1    | 23.4    |
| Африка     | 123  | 4.9   | <u>-</u> | 0.8      | 0.8    | 94.3  | 70.7    | 78.0    |
| Австралия  | 150  | 28.7  | 0.7      | 0.7      | 6.0    | 65.3  | 8.0     | 21.3    |
| Антарктида | 18   | 38.9  | -        | -        | -      | 61.1  | 11.1    | 11.1    |
| Европа     | 459  | 0.2   | -        | -        | -      | 99.8  | 82.1    | 93.7    |
| Азия       | 874  | 2.1   | 0.1      | 0.2      | 0.1    | 97.8  | 81.1    | 90.5    |

*Примечание*. Таблица обобщает распределение оценок на рис. 5.1. Процентное содержание рассчитано относительно N (N - общее количество станций/боксов в регионе).


Факт продолжающегося глобального потепления обсуждался выше (гл.3-4) с привлечением доступных оценок для Земного шара, Северного и Южного полушарий, отдельных широтных поясов, континентов и океанов. В данном разделе анализируются локальные оценки трендов и региональные особенности текущего состояния глобального потепления весенних сезонов.

В соответствии с оценками таблицы 5.1, потепление весенних сезонов подтверждается данными более 90% всех наземных наблюдений (91.8% станций / 92.3%

боксов). Тем не менее, значительна и доля станций с тенденцией к похолоданию (7.6% станций / 6.9% боксов), но лишь 0.2% этих оценок статистически значимы на 1%-м уровне. Оценок с тенденцией к похолоданию в Северном полушарии в более, чем в 4 раза меньше, чем в Южном: 5.0% станций против 20.9% (2.9% боксов против 12.5%).



**Рисунок 5.1** — Пространственное распределение сезонных (весна) оценок локальных коэффициентов линейного тренда приземной температуры за период 1976-2020 гг. (°С/10 лет) Использованы данные: а) HadCRUT4 - сеточные данные Hadley/CRU, UK (суша+море); б) Т3288 — станционные данные ИГКЭ (только суша). Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений. Для станций Антарктиды и Гренландии приведены числовые значения коэффициентов тренда. Белыми кружками выделены боксы/станции, для которых тренд статистически значим на 1%-м уровне.



**Рисунок 5.2** – См. рис. 5.1, но для коэффициентов тренда среднемесячных аномалий температуры весенних месяцев.

Наиболее активное потепление весенних сезонов (и по площади охвата, и по интенсивности) наблюдается в Евразии: положительный тренд охватывает всю территорию Евразии и Северную Африку. При этом на всей азиатской территории России, Монголии и Казахстана тенденция к потеплению достоверна на 1%-м уровне значимости, а в северной полосе, от Таймыра до Чукотки, скорость потепления достигла максимальных значений (+1.6 и +1.3 °C/10, соответственно). В Африке, в Центральной и в Южной Америке, в Австралии и на акваториях всех океанов (кроме Южного) тенденция к потеплению выражена слабее (до +0.4, +0.5), в Индии - до +0.2°C/10 лет (рис. 1, табл. 5.1).

По-прежнему, из всех регионов потепление наиболее выражено в Арктике. Здесь всего наземных станций -130, отрицательных трендов - нет. Статистически значимых на 5%-м и 1% уровнях: в марте -71 и 44; в апреле -114 и 77, в мае -92 и 53.

В Антарктиде (суша) и Антарктическом поясе (суша+море) оценки тенденций (даже знак) меняются от месяца к месяцу, но, как уже отмечалось выше (гл. 4), и для

сезона, и для каждого месяца гипотеза о наличии ненулевого тренда уверенно отвергается с доверительной вероятностью 91%..

**Таблица 5.2** – Распределение локальных оценок тренда в зависимости от знака коэффициента тренда **b**: 1976-2020 гг. в отдельные месяцы сезона (% от N)

|                    |      | I        | лцы ссзон | (     | <u>/</u> | i e  |      |
|--------------------|------|----------|-----------|-------|----------|------|------|
| Регион             | N    | Ma       | рт        | Апр   | ель      | M    | ай   |
| T CI NON           | 11   | b<0      | b>0       | b<0   | b>0      | b<0  | b>0  |
|                    | Н    | adCRUT   | 4 (суша+  | море) |          |      |      |
| ЗШ                 | 1658 | 10.7     | 88.4      | 7.8   | 91.5     | 8.3  | 90.4 |
| СП                 | 941  | 6.0      | 93.2      | 4.5   | 94.9     | 2.7  | 96.9 |
| ЮП                 | 717  | 16.9     | 82.0      | 12.4  | 86.6     | 16.6 | 80.9 |
| 90-65N             | 87   | 4.6      | 95.4      | 2.3   | 97.7     | 1.1  | 98.9 |
| 65-25N             | 534  | 6.4      | 92.5      | 6.6   | 92.7     | 3.7  | 95.9 |
| 25S-25N            | 630  | 6.8      | 92.4      | 3.8   | 95.7     | 7.0  | 91.7 |
| 25-65S             | 390  | 21.3     | 77.4      | 16.7  | 81.8     | 19.9 | 76.9 |
| 65-90N             | 17   | 76.5     | 23.5      | 57.1  | 42.9     | 35.7 | 64.3 |
|                    |      | Т3288 (т | олько су  | ша)   |          |      |      |
| Земной шар         | 2264 | 6.8      | 92.7      | 9.7   | 89.4     | 10.4 | 89.1 |
| Северное полушарие | 1896 | 5.3      | 94.4      | 8.3   | 90.9     | 5.6  | 94.2 |
| Южное полушарие    | 369  | 16.6     | 81.4      | 17.0  | 81.9     | 33.0 | 5.5  |
| Северная Америка   | 307  | 22.7     | 76.6      | 34.2  | 64.8     | 18.0 | 81.7 |
| Евразия            | 1326 | 1.4      | 98.5      | 3.3   | 96.2     | 3.1  | 96.6 |
| Южная Америка      | 107  | 21.4     | 75.9      | 13.1  | 86.0     | 29.9 | 67.2 |
| Африка             | 123  | 6.6      | 92.0      | 7.8   | 88.8     | 4.1  | 95.9 |
| Австралия          | 150  | 10.1     | 88.6      | 18.1  | 81.2     | 49.0 | 49.7 |
| Антарктида         | 18   | 50.0     | 50.0      | 44.4  | 55.6     | 22.2 | 77.8 |
| Европа             | 459  | 0.7      | 99.1      | 0.4   | 99.3     | 5.5  | 94.5 |
| Азия               | 874  | 1.8      | 98.1      | 4.8   | 94.5     | 1.8  | 97.7 |

*Примечание*. Таблица обобщает распределение оценок на рисунке 5.2. Процентное содержание рассчитано относительно N (N - общее количество станций в регионе).

Из весенних месяцев потепление на континентах наиболее интенсивно в марте, на океанах — в апреле (92.7% и 91.5%, соответственно, табл. 5.2).

Важной особенностью весенних сезонов (в общей картине глобального потепления), по-видимому, можно считать:

- области отрицательных трендов (статистически незначимый тренд до -0.3°С/10 лет) в Северной Америке, в Тихом океане у берегов Южной Америки и на ее западном побережье, а также в умеренных широтах Южного океана; наибольшая доля станций с отрицательными трендами отмечена в мае (в Южной Америке 30%, в Австралии 49%).
- области локального ослабления потепления (статистически незначимый положительный тренд), уже отмечавшиеся нами ранее для других сезонов (см., например, <a href="http://climatechange.igce.ru/index.php?option=com\_docman&task=doc\_download&gid=275&Itemid=76&lang=ru">http://climatechange.igce.ru/index.php?option=com\_docman&task=doc\_download&gid=275&Itemid=76&lang=ru</a> бюллетень для зимнего сезона 2020 г.)

Эти области меняют конфигурацию и интенсивность от месяца к месяцу и, таким образом, могут оказаться предвестником некоторого ослабления или усиления глобального потепления в целом.

#### 6. ЗАКЛЮЧЕНИЕ

- 1. Весна 2020 года была вторым самым теплым весенним сезоном по Земному шару в целом и в Северном полушарии, а в Южном полушарии пятым самым теплым весенним сезоном за всю историю наблюдений, как в целом для суши и моря, так и для суши отдельно. Для суши аномалия приповерхностной температуры в среднем по Земному шару составила +0.956°C, по Северному полушарию +1.159°C, по Южному полушарию +0.431°C. Самым теплым сезоном по-прежнему остается весна 2016 года, когда соответствующие значения аномалий были: +1.105, +1.314 и +0.625°C
- 2. Сезонная аномалия температуры поверхности океанов в 2020 г. (данные HadSST3, только море), осредненная по Северному полушарию, была *самой высокой* за весь период наблюдений (+0.580°C), в Южном полушарии *четвертой* (+0.284°C), в целом по Земному шару *второй* (+0.425°C).
- 3. Яркая особенность весны 2020 г. сезонные аномалии температуры в крупных регионах мира, которые почти все превысили уровень 90-го процентиля (кроме значений для Северной Америки, Австралии, Антарктиды и Антарктического пояса), а многие оказались рекордно высокими. В числе последних – пояс умеренных широт Северного полушария (в целом, и в каждом из двух его океанических секторов), евразийский континент (в целом и отдельно на территории Азии) и континент Южной Америки. Эти региональные особенности согласуются с распределениями локальных оценок: локальные положительные аномалии, в том числе - экстремальные, охватили практически всю бореальную Азию (в Сибири весенние аномалии около 8°C, крупные аномалии наблюдались в течение трех месяцев). Менее интенсивные, но обширные аномалии (до +2.5; +3°C) отмечены на территории Западной Европы Центральной и Южной Америки, Индонезии и Новой Зеландии, а также в Атлантике (20S – 40N), Тихом и Индийском (20S-10N) океанах. При этом четверть всех значений - 5%-е экстремумы тепла (бОльшая часть в Северном полушарии). На суше Северного полушария рекордно теплым был май (аномалия +0.961°C), а март (+1.636°C) и апрель (+0.892°C) — второй и третий среди самых теплых в соответствующих рядах (по данным ИГКЭ).
- 4. Вторая яркая особенность температурного режима этой весны существенные отрицательные аномалии температуры отдельных месяцев в ряде регионов (значения региональных средних ниже уровня 20-30-го процентилей). К таким регионам относятся: в марте Антарктида и Антарктический пояс в целом; в апреле Северная Америка, в мае Австралия. В Северной Америке (в районе Великих озер), на юго-востоке Австралии, на приграничной территории Индии и Китая температура была ниже климатической нормы все три месяца.
- 5. Тенденция к потеплению весенних сезонов в течение в 1976-2020 гг. подтверждается данными более 90% всех наземных наблюдений (91.8% станций / 92.3% боксов). Наиболее активное потепление (и по площади охвата, и по интенсивности) наблюдается в Евразии: положительный тренд охватывает всю территорию Евразии и Северную Африку. При этом на всей азиатской территории России, Монголии и Казахстана тенденция к потеплению достоверна на 1%-м уровне значимости, а в северной полосе, от Таймыра до Чукотки, скорость потепления достигла максимальных значений (+1.6, +1.3 °C/10, соответственно).

Из всех регионов, по-прежнему, потепление наиболее выражено в Арктике. Здесь из оценок для 130 наземных станций: отрицательных трендов — нет, статистически значимых в марте — 71 и 44; в апреле — 114 и 77, в мае - 92 и 53 (на 5%-м и 1% уровнях).

Тем не менее, значительна и доля станций с тенденцией к похолоданию (7.6% станций / 6.9% боксов), и 0.2% этих оценок статистически значимы на 1%-м уровне. Оценок с тенденцией к похолоданию в Северном полушарии меньше, чем в Южном 4.2-4.3 раза: для станций: 5.0% станций против 20.9%; для боксов: 2.9 % боксов против 12.5%

- 6. Основной особенностью весенних сезонов (в общей картине глобального потепления), по-видимому, можно считать:
- области отрицательных трендов (статистически незначимый тренд до -0.3°С/10 лет) в Северной Америке, в Тихом океане у берегов Южной Америки и на ее западном побережье, а также в умеренных широтах Южного океана; наибольшая доля станций с отрицательными трендами отмечена в мае (в Южной Америке 30%, в Австралии 49%).
- области локального ослабления потепления (статистически незначимый положительный тренд), уже отмечавшиеся нами ранее для других сезонов (см., например, <a href="http://climatechange.igce.ru/index.php?option=com\_docman&task=doc\_download&gid=275&Itemid=76&lang=ru">http://climatechange.igce.ru/index.php?option=com\_docman&task=doc\_download&gid=275&Itemid=76&lang=ru</a> бюллетень для зимнего сезона 2020 г.)

Эти области меняют конфигурацию и интенсивность от месяца к месяцу и, таким образом, могут оказаться предвестником некоторого ослабления или усиления глобального потепления в целом.

- 7. Сравнение оценок глобальных трендов в разных подгруппах и категориях данных позволяет заключить:
- как правило, глобальное потепление *над сушей протекает быстрее*, чем над океанами, в Северном полушарии активнее, чем в Южном, и в последние 40-50 лет ускорилось в сравнении с минувшим столетием;
- единственное исключение: в течение 1921-2020 гг. потепление весенних сезонов на поверхности океанов протекало заметно активнее не в Северном полушарии, а в Южном! Это может означать, по-видимому, что и глобальное потепление в целом началось до 1975 г. с океанов Южного полушария! Однако этот вывод требует дополнительного анализа, с привлечением оценок для других сезонов.
- В рамках одного полушария коэффициент ускорения современного потепления относительно 100-летнего примерно одинаков для континентов и океанов, но в Северном полушарии он примерно в полтора раза выше, чем в Южном.