
Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФГБУ «Институт глобального климата и экологии имени академика Ю.А. Израэля»

Бюллетень мониторинга изменений климата Земного шара

Приземная температура – 2021

Годовой обзор

Москва 2022

$ОГЛАВЛЕНИЕ^{1),2)}$

1.	ВВЕДЕНИЕ	3
2.	ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА В 2021 году. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ	6
3.	КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ 1850-2021 гг.	18
4.	ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2021 гг	23
5.	ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2021 гг.	27
6	зуклюление	33

_

¹⁾ Бюллетень подготовлен в ФГБУ «ИГКЭ». Данные текущих наблюдений (сводки КЛИМАТ и СИНОП из оперативного потока) подготовлены в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ». Все бюллетени мониторинга климата, сезонные и годовые, выпускаемые в ФГБУ «ИГКЭ», размещаются на сайте http://climatechange.igce.ru/.

²⁾ На обложке приведено поле среднегодовых аномалий температуры приземного воздуха над сушей Земного шара: 2021 год (январь-декабрь). Использованы станционные данные ФГБУ «ИГКЭ»: T3288

1. ВВЕДЕНИЕ

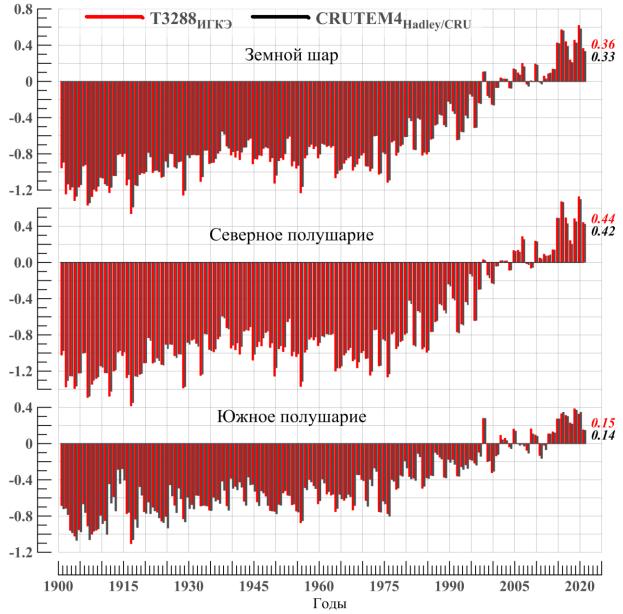
В настоящем бюллетене представлены данные о климатических аномалиях температурного режима 2021 года у поверхности земного шара и обновленные (с учетом этих данных) оценки тенденций его изменений в течение 1976—2021 гг. Оценки приведены для года в целом и каждого из сезонов (зима, весна, лето, осень).

Бюллетень подготовлен в рамках оперативного мониторинга климата GCCM (Global Climate Change Monitoring) в ФГБУ «ИГКЭ»³), с использованием данных метеорологических наблюдений о среднемесячной температуре приземного воздуха на 3288 наземных станциях земного шара (массив Т3288, данные ИГКЭ; массив сформирован и ежемесячно пополняется средствами технологии мониторинга на основе сводок КЛИМАТ, СИНОП). Параллельно в бюллетене приводятся оценки по данным о приповерхностной температуре на глобальной сети 5-градусных боксов, покрывающей всю территорию земного шара, континенты и океаны (массивы HadCRUT4, CRUTEM4, HadSST3⁴), данные метеослужбы Великобритании – в бюллетене упоминаются как «данные Hadley/CRU»).

Таким образом, базовым массивом для оценки состояния температурных условий на суше земного шара служит массив Т3288, а массив HadCRUT4 используется для создания полной картины над сушей и океанами. Глобальные временные ряды HadCRUT4, CRUTEM4, HadSST3 приводятся непосредственно по данным производителя как информация из альтернативного источника. Все основные оценки приводятся в аномалиях температуры относительно базового периода 1991-2020. Термины «приземная температура» и «приповерхностная температура» рассматриваются в бюллетене как синонимы. Развернутый комментарий к материалам бюллетеня с описанием используемых источников, сети станций и элементов методики размещен на сайте ИГКЭ⁵⁾

В материалах данного выпуска из данных Великобритании за декабрь 2021 г. использованы только данные CRUTEM4, т.к. только они были доступны на сайте MetOffice к моменту выпуска бюллетеня. Поэтому среднегодовые значения в глобальных рядах HadCRUT4 и HadSST3 за 2021 г., в узлах сетки, глобальные и региональные средние, получены по данным за первые 11 месяцев (январь-ноябрь).

Напомним, что в технологию GCCM введены дополнительные процедуры расчета данных КЛИМАТ (температура приземного воздуха, месячные суммы осадков) по данным соответствующих синоптических наблюдений (СИНОП) и последующего


³⁾ Решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 20 декабря 2016 г. – http://method.meteorf.ru

⁴⁾ Массивы приповерхностной температуры CRUTEM4 (только суша), HadSST3 (только море) и HadCRUT4 (суша+море) созданы и поддерживаются совместно двумя коллективами Великобритании — Хэдли-центром (Met Office Hadley Centre) и Университетом Восточной Англии (CRU UEA). Данные ежемесячно обновляются и публикуются производителем на web-сайтах http://www.MetOffice.gov.uk и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и глобально осредненных временных рядов (для Земного шара и обоих полушарий). В данном выпуске использованы данные HadCRUT.4.6.0.0 и HadSST.3.1.1.0 от 13.01.2021, и данные CRUTEM.4.6.0.0 от 20.01.2022.

⁵⁾ О бюллетене GCCM (read me). – http://climatechange.igce.ru /index.php?option=com_docman&task= doc_download&gid=220 &Itemid=76&lang=ru

использования их для контроля сводок КЛИМАТ и пополнения их данными недостающих станций.

Сравнение глобальных временных рядов температуры приземного воздуха по данным массивов Т3288 (ИГКЭ) и CRUTEM4 (Hadley/CRU). Цель сравнения: с одной стороны — убедиться в репрезентативности массива Т3288, с другой — оценить меру неопределенности оценок, полученных с использованием единой системы наблюдений, но разных методов и технологий сбора данных, их обработки и анализа. Близость рядов примерно с середины прошлого столетия четко видна уже визуально (рис. 1.1). Количественные оценки (статистические характеристики попарных разностей) по данным за 1976-2021 гг. (период современного глобального потепления) и 1922-2021 гг. (последнее столетие) приведены в таблице 1.1 для Земного шара, Северного и Южного полушарий (только суша!).

Рисунок 1.1 — Временные ряды пространственно осредненных годовых аномалий температуры приземного воздуха (°C) над сушей Земного шара, Северного и Южного полушарий. Использованы временные ряды, рассчитанные по данным массива Т3288 (ИГКЭ), и глобальные временные ряды CRUTEM4 (Hadley/CRU), 1901-2021 гг.

Среднее различие рядов за 1922-2021 гг. по разным глобальным территориям (земной шар, полушария) и данным (Т3288, CRUTEM4) колеблется в интервале от -0.01 до +0.03°C, но за последние 46 лет — от +0.01 до +0.02°C. Расхождения рядов в конкретные годы после 1976 г. никогда не достигали 0.08°C, но в 1925 г. составило в ЮП 0.128°C (в СП не более, соответственно, 0.06 и 0.09°C). При этом стандартное отклонение различий (0.02–0.04°C) на порядок ниже стандартного отклонения самих рядов (0.26–0.51°C), и во всех случаях ряды характеризуются высокой корреляцией (не ниже 0.994) и предельно низким различием трендов (до ± 0.01 °C/10 лет) (табл. 1.1).

Таблица 1.1 – Оценки близости/различия глобальных временных рядов Т3288 (ИГКЭ) и CRUTEM4 (Hadley/CRU) в среднем для территории суши Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий

0		1976-2021	1		1922-2021	
Оценка	ЗШ	СП	ЮП	3Ш	СП	ЮП
Корреляция рядов	0.999	0.999	0.996	0.998	0.999	0.994
Среднее различие, °С	0.009	0.009	0.018	-0.008	-0.005	0.027
СКО (сигма) различий, °С	0.019	0.019	0.022	0.031	0.030	0.036
Среднее абсолютное различие, °С	0.018	0.017	0.023	0.025	0.023	0.034
Макс. абсолютное различие, °С	0.052	0.063	0.079	0.088	0.090	0.128
Разность коэфф. тренда, °С/10лет	0.008	0.005	-0.003	0.005	0.004	-0.005
CKO T3288, °C	0.415	0.491	0.258	0.454	0.514	0.321
CKO CRUTEM4, °C	0.402	0.482	0.259	0.435	0.499	0.326

Таким образом, статистические оценки изменчивости температуры приземного воздуха по данным массива Т3288 (в данном случае – среднегодовым), очень близки к оценкам по данным всемирно признанного массива CRUTEM4. Для каждого из сезонов аналогичные оценки, практически с тем же заключением, представлены в соответствующих выпусках сезонных бюллетеней.

Интересно проследить характер изменений глобальной температуры в последние годы, начиная с экстремума 2016 г. (рис. 1.1, табл. 1.2).

Таблица 1.2 – Межгодичные изменения глобальной температуры с 2016 г. (в среднем по территории суши Земного шара и полушарий)

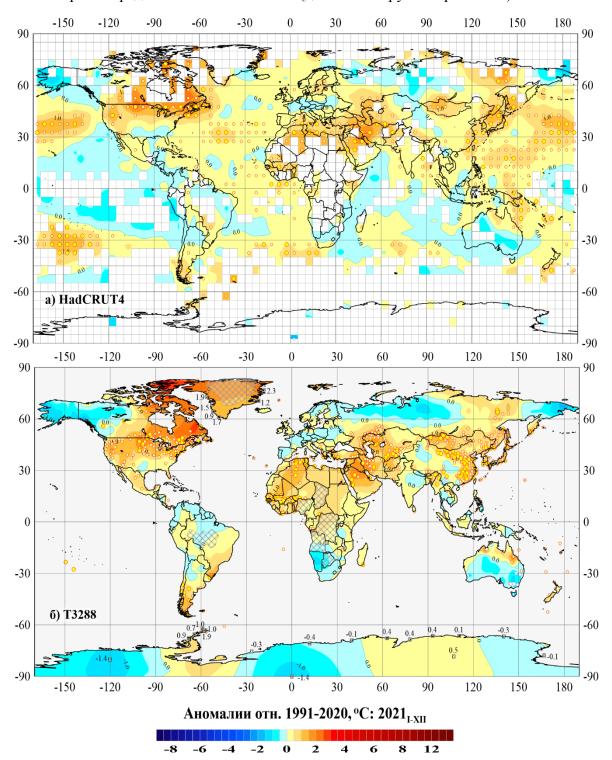
Попион	Т3	288, °С (ИГК	(E.	CRUTEM4, °C (Hadley/CRU)				
Период	3Ш	СП	ЮП	3Ш	СП	ЮП		
2016	0.570	0.670	0.328	0.558	0.665	0.345		
2017-2016	-0.132	-0.178	-0.018	-0.172	-0.236	-0.045		
2018-2017	-0.202	-0.252	-0.083	-0.179	-0.226	-0.085		
2019-2018	0.218	0.242	0.157	0.217	0.248	0.153		
2020-2019	0.163	0.242	-0.059	0.156	0.246	-0.023		
2021-2020	-0.254	-0.284	-0.175	-0.250	-0.274	-0.200		
2021	0.363	0.440	0.150	0.330	0.423	0.145		

Можно видеть, что в 2017 и 2018 гг. произошло заметное понижение температуры на суше обоих полушарий, но в 2019 году (для Южного полушария) и в 2020 году (для Земного шара в целом и для Северного полушария) температурный рекорд обновился.

Отметим, что как выводы, так и оценки для индивидуальных лет (табл. 1.2) по данным T3288 и CRUTEM4 хорошо согласуются между собой.

2. ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА в 2021 ГОДУ. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ

В соответствии с полученными оценками (табл. 2.1), в целом по Земному шару 2021 год был шестым среди самых теплых лет по всем наборам данных. Шестым он был и для суши Северного полушария (для моря СП — пятым). В Южном полушарии 2021 год был более прохладным (ранг не выше одиннадцатого). Детали см. в таблице 2.1.


Таблица 2.1 – Самые теплые годы для Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий по данным разных источников: средняя за год аномалия температуры VT и год наблюдения

	3	 Ш	(СП	Ю	П
Ранг	VT, °C	Год	VT, °C	Год	VT, °C	Год
	,	HadCRUT		RU, суша+мој		, ,
1	0.331	2016	0.508	2020	0.209	2016
2	0.302	2020	0.454	2016	0.180	2019
3	0.297	2015	0.423	2015	0.175	2015
4	0.270	2019	0.362	2019	0.143	1998
5	0.211	2017	0.312	2017	0.112	2017
6	0.179	2021	0.304	2021	0.099	2020
					0.059 (10)	2021
		Т	3288 (ИГКЭ,	суша)		
1	0.617	2020	0.724	2020	0.384	2019
2	0.570	2016	0.670	2016	0.328	2016
3	0.454	2019	0.492	2017	0.325	2020
4	0.438	2017	0.488	2015	0.310	2017
5	0.425	2015	0.482	2019	0.277	1998
6	0.363	2021	0.440	2021	0.271	2015
					0.150 (10)	2021
		CRUTI	EM4 (Hadley/	/CRU, суша)		
1	0.580	2020	0.697	2020	0.368	2019
2	0.558	2016	0.665	2016	0.345	2020
3	0.424	2019	0.489	2015	0.345	2016
4	0.417	2015	0.451	2019	0.300	2017
5	0.386	2017	0.429	2017	0.276	1998
6	0.330	2021	0.423	2021	0.272	2015
					0.145 (8)	2021
			ST3 (Hadley/			
1	0.267	2016	0.419	2020	0.203	2016
2	0.246	2015	0.336	2019	0.142	2015
3	0.236	2019	0.336	2016	0.141	2019
4	0.233	2020	0.327	2015	0.111	1998
5	0.159	2017	0.274	2021	0.102	2017
6	0.153	2021	0.240	2017	0.079	2010
					0.060 (11)	2021

Примечание. В Южном полушарии ранг 2021 г. показан в скобках

Географическое распределение среднегодовых аномалий приведено на рисунке 2.1. В таблице 2.2 представлены значения пространственно осредненных аномалий, годовых и сезонных, для Земного шара и крупных регионов мира (полушария,

континенты, океаны и основные широтные пояса), в абсолютной и вероятностной шкалах. В таблицах 2.3, 2.3а для них же приведены частотные распределения среднегодовых локальных аномалий по знаку и степени экстремальности, а в таблицах 2.4 и 2.5 – значения и ранги среднемесячных аномалий (для тех же крупных регионов).

Рисунок 2.1 – Пространственное распределение среднегодовых аномалий приземной температуры в 2021 г. (°C): а) по сеточным данным HadCRUT4 (Hadley/CRU, UK), январь-ноябрь; б) по станционным данным T3288 (ИГКЭ), январь-декабрь.

Аномалии приведены в отклонениях от средних за 1991-2020 гг. Кружками белого (минимумы) и желтого (максимумы) цвета указано положение боксов/станций с рекордными значениями аномалий. Значками меньшего размера указано положение 5%-х экстремумов того же знака.

В точках расположения станций Антарктиды и Гренландии показаны числовые значения наблюдаемых аномалий. Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений.

Таблица 2.2 – Регионально осредненные значения аномалии приземной температуры в 2021 г. и их вероятности непревышения (в среднем за год и в каждом из сезонов)

	D	Γ	0Д	3и	ма	Bee	сна	Ле	ето	Осень	
	Регион	vT	F%	vT	F%	vT	F%	vT	F%	vT	F%
			Had	CRUT4	(суша-	⊦море)					
Земной	шар	0.18	95.5	0.05	90	0.14	94.5	0.24	96.4	0.26	98.2
Северно	е полушарие	0.30	95.5	0.16	91.8	0.28	95.5	0.37	97.3	0.38	97.3
Южное	Южное полушарие		91.8	-0.07	79.1	0.00	87.3	0.10	94.5	0.13	96.4
Атланти	Атлантика (15-70N)		98.2	0.20	94.5	0.26	99.1	0.15	89.1	0.47	100
Тихий о	жеан (20-65N)	0.42	97.3	0.55	100	0.44	99.1	0.40	96.4	0.36	95.5
65-90N		0.18	88.2	-0.13	74.5	0.34	90	0.40	93.6	0.38	87.3
25-65N 25S-25N 65-25S		0.49	99.1	0.27	92.7	0.46	98.2	0.62	100	0.55	99.1
25S-25N 25S-25N		0.07	90	-0.05	81.8	-0.02	86.4	0.08	92.7	0.11	90.9
 Шиј п	65-25S	0.18	98.2	0.08	91.8	0.17	95.5	0.15	97.3	0.24	100
	90-65S	0.13	73.7	-0.53	14.1	-0.32	34.6	-0.03	64.9	1.12	97.4
				T3288	В (суша)					
Земной	шар	0.36	95.5	0.14	90.9	0.27	93.6	0.50	100	0.44	98.2
Северно	е полушарие	0.44	95.5	0.24	93.6	0.42	96.4	0.56	100	0.53	99.1
Южное	полушарие	0.15	91.8	-0.10	79.1	-0.08	81.8	0.32	97.3	0.24	96.4
Северна	я Америка	0.68	97.3	0.64	90.9	0.37	90.9	0.73	100	1.24	99.1
Евразия		0.39	94.5	-0.33	75.5	0.50	93.6	0.73	100	0.35	91.8
Южная	Америка	0.19	94.5	-0.08	75.5	-0.14	73.6	0.06	83.6	0.45	99.1
Африка		0.49	98.2	0.77	99.1	0.34	92.7	0.47	98.2	0.54	98.2
Австрал	ия	-0.16	73.6	-0.50	40.9	-0.55	47.3	0.15	86.4	-0.39	62.7
Антаркт	гида	-0.22	54.5	-0.87	14.3	-0.78	28.6	-0.01	68.8	0.61	92.2
Европа		0.15	88.2	-0.52	60.9	-0.05	78.2	1.39	100	0.18	80
Азия		0.44	94.5	-0.32	76.4	0.64	94.5	0.55	99.1	0.41	92.7
		(CRUTE	M4 (cyı	ua)						
Земной	Земной шар		95.5	0.13	91.8	0.25	93.6	0.49	100	0.39	98.2
Северно	Северное полушарие		95.5	0.23	92.7	0.38	95.5	0.57	100	0.45	97.3
Южное	полушарие	0.15	93.6	-0.07	81.8	-0.01	85.5	0.32	97.3	0.27	96.4

Условные обозначения.

- 1. vT, ${}^{\circ}$ С наблюденная аномалия в 2021 году (базовый период 1991-2010 гг.);
- 2. F% —значение эмпирической функции распределения F=prob($X \le vT_{2021}$) по данным за 1911-2021 гг. (вероятность непревышения)
- 3. Красным шрифтом выделены абсолютные максимумы (наибольшие из всех значений ряда за 1911-2021 гг.), синим отрицательные аномалии.

В соответствии со среднегодовыми оценками (рис. 2.1, табл. 2.3), в 2021 г. на территории Земного шара преобладали положительные аномалии температуры (65-70% всех наблюдений по данным HadCRUT4/T3288). Среди них 27% оказались выше 95-го процентиля (5%-е экстремумы тепла), в том числе 7% стали для своих пунктов

рекордными. Наиболее крупные положительные аномалии сосредоточены на северных континентах: Северная Америка (37% значений выше 95-го процентиля, из них 6% -- абсолютные максимумы), Африка (57 и 27%, при втрое меньшем числе доступных станций) и Евразия (Азия: 30.8 и 8.8%). Из широтных поясов выделяются северные умеренные широты (25-65N: 39 и 11%), за счет отмеченных выше континентов, а также северных частей Атлантического и Тихого океанов.

Отрицательные годовые аномалии также наблюдались и на суше, и на акваториях океанов. На суше - это: Аляска, запад Канады, север Евразии, север Южной Америки, юг Африки, почти вся Австралия, Антарктида. Австралия выделяется особо – здесь на 9% станций (на юго-восточном побережье) фиксировались 5%-е экстремумы холода. На акваториях океанов отрицательные аномалии наблюдались в тропических широтах Тихого (у берегов Американского континента) и Индийского (у берегов Африки и Австралии) океанов.

Таблица 2.3 – Частотное распределение локальных среднегодовых аномалий для крупных регионов Земного шара в 2021 г. по данным массивов HadCRUT4 и T3288 (все значения приведены в процентах от NN)

		NN-	ų	Гисло знач	чений в к	аждой ка	гегории (г	з % от NN	I)
D	егион	число		Аномалии			тремумы	Абсол	ютные
I I	егион	боксов/	(отн.	1991-202	0 гг.)	холода	л/тепла	_	емумы
		станций	V < 0	V=0	V >0	$X \le P_{05}$	$X \ge P_{95}$	X = min	X = max
			Н	adCRUT4	4 (суша+м	юре)			
ЗШ		1429	26.5	8.7	64.9	0.1	27.2	-	7.4
СП		888	20.7	20.7 7.0		-	33.8	-	8.6
ЮП		541	35.9	11.5	52.7	0.2	16.3	-	5.5
AO, 15	5-70N	133	14.3	9.0	76.7	-	28.6	-	8.3
TO, 20)-65N	151	4.0	6.0	90.1	-	60.3	-	15.2
4)	65-90N	79	32.9	3.8	63.3	-	11.4	-	4
ные а	25-65N	525	15.2	5.0	79.8	-	39.0	-	11.0
иротнь пояса	25S-25N	539	32.7	12.8	54.5	-	21.9	-	4.6
Широтные пояса	65-25S	272	33.1	9.2	57.7	-	20.6	-	7.4
	90-65S	14	42.9	7.1	50.0	7.1	-	-	-
				Т3288 (то	олько суп	ıa)			
ЗШ		2485	24.2	6.4	69.4	0.6	27.2	0.3	6.7
СП		2130	21.9	5.6	72.5	0.1	29.0	0.0	7.2
ЮП		356	37.6	11.2	51.1	3.9	16.3	2.0	3.9
С. Ам	ерика	430	17.9	2.6	79.5	-	37.4	-	5.6
Еврази	Я	1483	24.6	6.9	68.5	0.1	23.0	0.1	5.9
Ю. Ам	перика	104	25.0	13.5	61.5	-	16.3	-	7.7
Африн	ca	139	9.4	5.8	84.9	-	56.8	-	26.6
Австралия		127	66.1	9.4	24.4	9.4	6.3	5.5	-
Антарктида		18	27.8	-	72.2	5.6	33.3	-	11.1
Европ	Европа		35.7	11.4	52.9	-	9.0	-	1.1
Азия		957	18.4	4.3	77.3	0.2	30.8	0.1	8.8
Аркти	ка	150	50.7	7.3	42.0	-	8.0	-	2.7

Условные обозначения.

^{1.} V < 0, V = 0, V > 0 – категории аномалий; 2. P05, P95 – 5-я и 95-я процентили

^{3.} min, max – абсолютные экстремумы: наименьшее и наибольшее значения с 1911 г.

Таблица 2.3а — Частотное распределение локальных сезонных аномалий в крупных регионах Земного шара в 2021 г. по данным массивов HadCRUT4 и T3288 (все значения приведены в процентах от NN)

		NN-		Число з	вначений	в каждо	й катего	рии (в %	от NN)	
P	егион	число боксов/	Зи	ма	Bee	сна	Ле	ето	Oce	ень
		станций	$X \leq P_{05}$	$X \ge P_{95}$	$X \leq P_{05}$	$X \ge P_{95}$	$X \leq P_{05}$	X≥P ₉₅	$X \leq P_{05}$	$X \ge P_{95}$
				HadCR	RUT4 (cyi	ша+море)			
ЗШ		1429	1.3	17.6	1.0	16.4	0.6	23.1	0	29
СП		888	0.7	20.0	0.5	19.3	0.1	27.3	0	32
ЮП		541	2.2	13.7	1.8	11.6	1.5	16.3	1	23
AO, 1	5-70N	133	0.8	15.0	-	21.1	-	14.3	-	45
TO, 2	0-65N	151	-	35.8	-	40.4	-	48.3	-	26
	65-90N	79	3	12.7	-	8.9	-	16.5	-	13
ные а	25-65N	525	0.2	18.3	-	20.6	-	35.8	1	34
TTOC SORC	25S-25N	539	2.0	18.7	1.9	12.2	0.9	16.1	0	28
Пир пс	65-25S	272	1	16.5	1.1	19.5	0.7	15.4	0	27
	90-65S	14	7	-	7.1	-	14.3	-	-	14
				T328	8 (тольк	о суша)				
ЗШ		2485	1.0	11.7	1.5	12.4	0.9	33.0	1.1	22.5
СП		2130	0.3	12.6	0.3	13.3	0.5	34.9	0.7	23.1
ЮП		356	5.1	6.5	8.7	6.7	3.7	21.6	3.4	19.1
C. Am	ерика	430	0.5	14.4	0.2	8.1	0.7	39.1	1.2	43.7
Евраз	ия	1483	0.3	9.1	0.4	13.3	0.5	34.4	0.7	15.5
Ю. А	мерика	104	2.9	4.8	1.0	7.7	1	8.7	-	25.0
Афри	ка	139	-	38.8	-	11.5	1	41.7	-	38.1
Австр	алия	127	10.2	4.7	21.3	6.3	8.7	21.3	7.9	7.9
Антар	жтида	18	-	5.6	5.6	5.6	11.1	5.6	-	33.3
Еврог	ıa	535	-	6.5	0.4	1.9	1	45.8	-	12.1
Азия		957	0.5	10.6	0.4	19.7	0.7	28.1	1.0	17.2
Аркти	ика	150	0.7	10.0	-	4.7	-	24.7	-	16.7

Из сезонов (табл. 2.2) выделяется рекордно теплое лето на суше ЗШ (аномалия 0.50° C, ранг 1), особенно в Северном полушарии (самый теплый летний сезон в истории наблюдений на обоих континентах и в целом по широтному поясу 25-65N). Зима была рекордно теплой в северной части Тихого океана (0.55° C), осень – в северной Атлантике (0.47° C) и в широтном поясе 25-65S (0.24° C). В Австралии, напротив, 5%-е экстремумы холода фиксировались в течение всех сезонов, особенно заметно – весной (21% станций) и зимой (10%).

В соответствии с ежемесячными оценками (табл. 2.4-2.5), в среднем по Земному шару экстремально тепло (ранг не выше 3) было в июле и октябре-ноябре, в Северном полушарии – еще и в июне, а в Южном полушарии – только в сентябре. Второе полугодие было особенно теплым в умеренных широтах обоих полушарий, на континентах и океанах. Проследить изменение температурных условий в конкретных регионах Земного шара более детально, от месяца к месяцу можно по таблицам 2.4, 2.5 и рисункам 2.3а-г.

Таблица 2.4 – Пространственно осредненные значения среднемесячных аномалий приземной температуры в 2021 г. в целом по Земному шару и полушариям

Регион						Месяцы	г 2021 г.						Год
1 егион	I	II	III	IV	V	VI	VII	VIII	IX	X	X1	XII	I-XII
					H	<i>ladCRU</i>	T4 (cyu	іа+море	<u>e)</u>				
ЗШ	0.06 ₁₂	-0.01 ₁₆	0.138	0.11 11	0.19 5	0.21 5	0.27 2	0.24 6	0.24 5	0.27 3	0.26 3		0.18 6
СП	0.178	0.05 13	0.28 7	0.22 9	0.33 4	0.41 2	0.39 2	0.33 5	0.35 5	0.40 3	0.40 3		0.30 6
ЮП	-0.00 ₂₃	-0.06 ₂₃	-0.04 16	-0.01 17	0.04 12	0.01 14	0.15 4	0.15 6	0.13 3	0.14 5	0.12 6		$0.06_{10.5}$
						T3.	288 (cyu	ua)					
3Ш	0.23 8	-0.08 19	0.31 9	$0.23_{\ 12}$	0.28 9	0.51 1	0.57 1	0.41 2	0.43 4	0.49 2	0.41 5	0.39 6	0.36 6
СП	0.38 8	0.00 17	0.52 7	0.33 9	0.42 5	0.71 ₁	0.58 1	0.41 3	0.39 6	0.57 1	0.62 5	0.42 8	0.44 6
ЮП	-0.13 ₂₇	-0.27 _{43.5}	-0.20 ₃₃	-0.00 19	-0.04 22	0.02 14	0.53 2	0.41 4	0.52 2	0.29 7	-0.08 22	0.32 4	0.15 10
						CRUT	TEM4 (d	суша)					
ЗШ	0.17 8	-0.01 17	0.29 9	0.19 12	0.28 8	0.51 1	0.55 1	0.40 2	0.43 3	0.42 3	0.31 8	0.43 5	0.336
СП	0.29 8	0.08 12	0.48 8	0.25 11	0.43 5	0.71 ₁	0.61 1	0.39 4	0.36 7	0.48 2	0.51 7	0.51 6	0.42 6
ЮП	-0.06 ₂₂	-0.18 ₂₇	-0.09 ₂₃	0.09 12	-0.03 19	0.10 12	0.42 3	0.44 3	0.58 1	0.30 6	-0.08 22	0.27 5	0.15 8
						Had	SST3 (M	ope)					
ЗШ	0.06 11	0.068 9	0.10 8	0.12 10	0.17 5	0.11 8	0.18 5	0.18 7	0.18 6	0.24 4	0.25 4		0.15 6
СП	0.17 6	0.202 5	0.25 4	0.25 4	0.27 4	0.23 7	0.27 6	0.27 7	0.36 5	0.37 4	0.33 4		0.27 5
ЮП	-0.01 19	-0.01 _{17.5}	-0.00 16	0.03 14	0.10 8	0.02 17	0.10 4	0.08 11	0.02 10	0.12 5	0.19 3		0.06 11

Примечание. Нижними индексами показаны ранги в соответствующих упорядоченных по убыванию временных рядах (1911-2021 гг.). Красным цветом выделены абсолютные максимумы (ранг 1, жирный шрифт) и значения с рангами 2 и 3.

Таблица 2.5 – Регионально осредненные значения аномалий приземной температуры для континентов, северных частей Атлантического и Тихого океанов и основных широтных поясов земного шара в 2021 г. (по месяцам и в среднем за год)

Регион					N	Лесяць	і 2021 г	7.					Год
1 стион	I	II	III	IV	V	VI	VII	VIII	IX	X	X1	XII	I-XII
				H	adCRU	T4 (cyı	иа+мор	oe)					
AO,15-70 N	0.28	0.2 5	0.2 5	0.3 3	0.3 2	0.2 11	0.1 17	0.2 11	0.4 2	0.5 1	0.5 1		0.3 3
TO,40-60N	0.5 1	0.5 1	0.4 3	0.4 3	0.5 3	0.5 3	0.4 8	0.4 6	0.5 4	0.3 7	0.3 5		0.4 4
65-90N	0.1 32	-1.4 ₆₈	-1.0 47	0.9 10	0.9 4	0.7 6	0.2 13	0.3 8	0.3 15	0.8 9	0.0 31		0.2 14
25-65N	0.3 7	0.2 11	0.6 7	0.3 6	0.5 1	0.7 ₁	0.7 ₁	0.5 2	0.5 4	0.5 1	0.6 3		0.5 2
25S-25N	-0.1 22	-0.1 ₂₇	0.0 17	-0.1 19	0.0 13	0.0 18	0.1 9	0.2 7	0.1 10	0.1 9	0.1 13		0.1 12
65-25S	0.1 8	0.1 5	0.1 9	0.2 3	0.2 6	0.2 3	0.2 3	0.1 8	0.2 1	0.2 2	0.3 1		0.2 3
90-65S	-0.5 70	-0.5 70	0.3 23	-0.7 ₆ 0	-0.5 42	-1.2 ₅₂	0.4 22	0.8 16	2.0 6	2.0 3	-0.5 48		0.1 21
						T.	3288 (cj	ywa)					
С. Америка	2.7 2	-2.3 ₉₀	1.1 9	0.2 24	-0.2 39	1.3 1	0.5 9	0.4 10	0.8 3	1.8 3	1.1 11	0.6 22	0.7 4
Евразия	-0.8 49	0.3 16	0.5 11	0.2 11	0.8 3	0.8 2	0.8 2	0.6 3	0.2 13	0.2 16	0.7 8	0.3 22	0.4 7
Ю. Америка	-0.2 ₃₈	-0.2 ₅₀	-0.3 ₅₆	0.2 15	-0.3 ₅₆	-0.3 49	0.4 15	0.4 14	1.0 1	0.4 5	0.0 24	0.3 6	0.2 7
Африка	0.9 2	0.4 10	0.0 19	0.5 4	0.5 5	0.7 2	0.3 8	0.5 3	0.7 2	0.1 14	0.8 2	0.5 7	0.5 3
Австралия	-0.5 ₅₀	-0.9 ₈₈	-0.8 ₈₄	-0.8 ₆₃	-0.2 48	-0.6 ₆₅	0.7 6	0.4 13	0.1 25	0.1 25	-1.4 91	0.4 21	-0.2 ₃₀
Антарктида	-1.0 ₆₈	-0.9 ₆₀	-0.3 ₄₆	-1.6 ₆₄	-0.5 34	-0.5 40	0.6 23	-0.1 ₃₀	1.1 11	1.16	-0.3 ₃₆	-0.2 42	-0.2 ₃₇
Европа	-0.2 42	-2.0 ₆₉	-0.3 ₃₃	-0.2 34	0.4 21	2.2 1	1.3 3	0.7 8	-0.6 ₆₃	0.3 26	0.8 23	-0.5 ₅₀	0.2 14
Азия	-1.0 ₆₃	0.8 11	0.8 10	0.3 14	0.8 2	0.4 9	0.7 1	0.5 3	0.5 6	0.2 14	0.6 13	0.5 19	0.4 7

Примечание. См. примечание к табл. 2.4

Сезонные особенности распределения аномалий. Пространственные распределения сезонных аномалий представлены на рисунке 2.2 и детализированы на рисунках 2.3 для отдельных месяцев каждого сезона. Числовые оценки сезонных распределений обобщены в таблицах 2.2, 2.3, 2.3а и детализированы для отдельных месяцев в таблицах 2.4, 2.5.

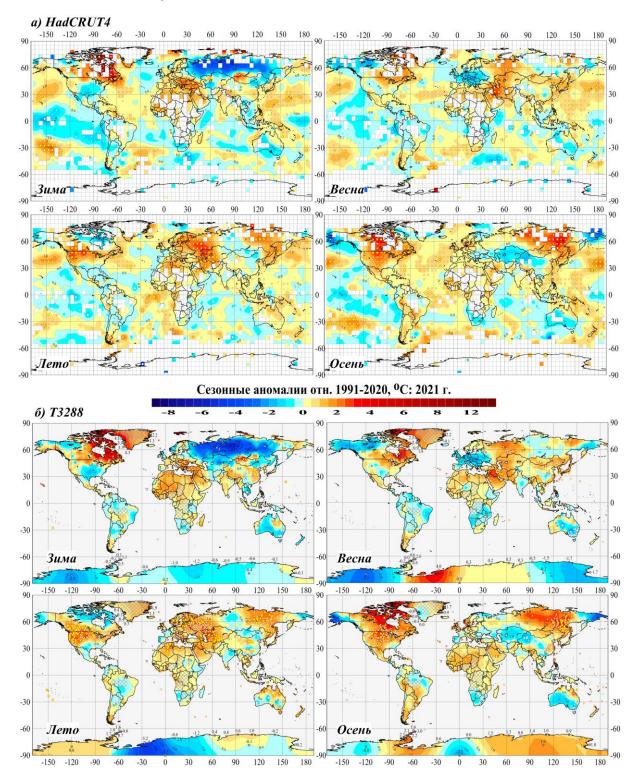
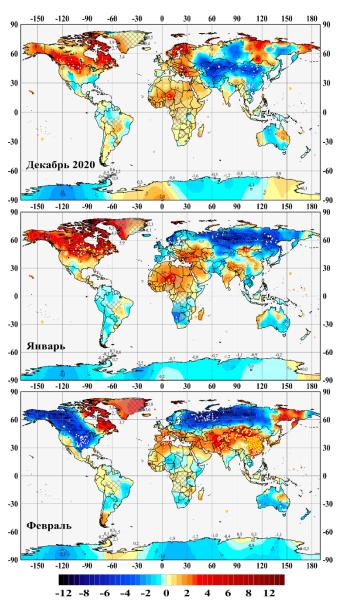



Рисунок 2.2 – См. рис. 2.1, но для сезонных аномалий 2021 г.: а) по данным в центрах 5-градусных боксов на полной сетке HadCRUT4 (суша+море); б) по данным наземных станционных наблюдений Т3288 (только суша)

Зимний сезон 2020/21 стал одиннадцатым в упорядоченном по убыванию ряду глобально осредненной (только суша) зимней температуры приземного воздуха; для суши Северного полушария сезон оказался на восьмом месте, Южного — лишь на 24-м. Из

Рисунок 2.3а — Аномалии среднемесячной температуры приземного воздуха, зимний сезон 2020/21г. (T3288, °C).

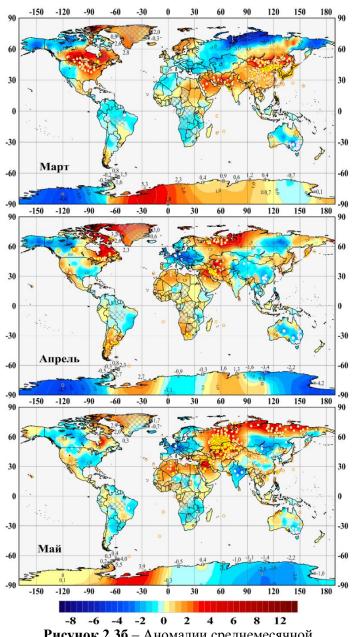
континентов выделяются Африка (0.77°C, ранг 2) и Северная Америка (0.64°C, ранг 11). При этом в Африке теплыми были все месяцы сезона (ранги 1, 2, 10), а в Северной Америке первые два месяца также были экстремально теплыми, тогда как февраль — самым холодным после 1985 года.

В феврале теплым континентом была также Азия (+0.8, ранг 11) и, как следствие, включающая ee Евразия (+0.3, ранг 16), несмотря на холодную Европу (-2.0, ранг 69). Ha остальных континентах зима была относительно холодной - в среднем за сезон и практически во все месяцы аномалия температуры отрицательная.

Области наиболее интенсивных положительных аномалий зимой: восток Канады и Гренландия в Северной Америке, северная Африка, южные регионы Евразии (Средиземноморье, Китай, юго-восточная Азия). Обширная область интенсивных отрицательных аномалий всю северную охватила территорию Евразии (Россия, Казахстан: аномалии до -5.5°C, с многочисленными 5%-и экстремумами).

Менее интенсивные отрицательные аномалии отмечались в Северной Америке (на востоке США и на севере Канады) и на всех континентах Южного полушария: в Антарктиде (аномалии

до -2.6° С в западном секторе); в Австралии (5%-е экстремумы на 10% станций); в Южной Америке (аномалии до -1.5° С), на юге Африки. Отрицательные аномалии зимой 2020/21 наблюдались также в приэкваториальных широтах Тихого океана (здесь не приводятся).


Весна в целом по территории суши Земного шара (рис. 2.2, 2.3б), была достаточно теплой (по данным массива Т3288 глобальная аномалия приземной температуры над сушей составила $+0.27^{\circ}$ C, вероятность непревышения 94%). Доля сезонных положительных аномалий по данным наземных станций – около 61% всех наблюдений.

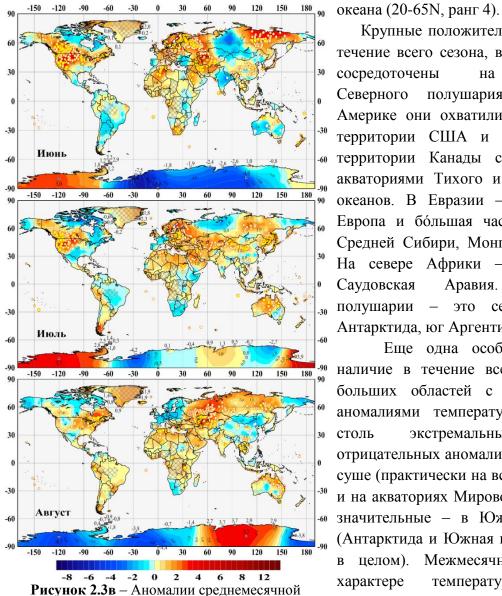
Основной вклад принадлежит континентам Северного полушария. В целом по Северному полушарию (аномалия +0.423°C – ранг 5), доля положительных аномалий 65%.

В Евразии и Африке температурные условия были близки к экстремально теплым: температура в мае (в Африке и в апреле) превысила уровень 95-го процентиля (5%-е экстремумы тепла) даже в среднем по территории континента. В Азии май — второй самый теплый после мая 2020 года.

Холоднее, чем в среднем, весна была на континентах Южного полушария – Южная Америка (март, май), Австралия и Антарктида (мартапрель). В целом по Южному полушарию (на суше), температура была ниже средней за последние 30 лет, как в среднем за сезон, так и в каждом из весенних месяцев.

Пространственные особенности температурного режима весны: выделяется обширная меридионально вытянутая область тепла в Евразии, протянувшаяся ОТ Аравийского полуострова через Иран и Среднюю Новой Азию ДО Земли, многочисленными локальными экстремумами на юге Западной Азии и в районе Урала. Выделяются также локализации экстремумов области тепла в Юго-Восточной и Восточной Азии обширная область положительных аномалий в Северной Америке – восточная территория

Рисунок 2.36 – Аномалии среднемесячной температуры приземного воздуха: март – май 2021 (T3288, °C).


Канады, включая Канадский Архипелаг и Гренландию.

Отрицательные аномалии с множеством локальных экстремумов (температуры ниже 5%-о процентиля) наблюдались практически только в Австралии. Слабые отрицательные аномалии занимали почти всю территорию Южной значительные области на юге Африки и в Антарктиде. В Северном полушарии области отрицательных аномалий отмечались В Европе (c единичными экстремумами), в Средней Сибири, на Аляске и северо-западе Канады. Отрицательные аномалии в весенний сезон наблюдались также в широтах 30S-30N Тихого океана.

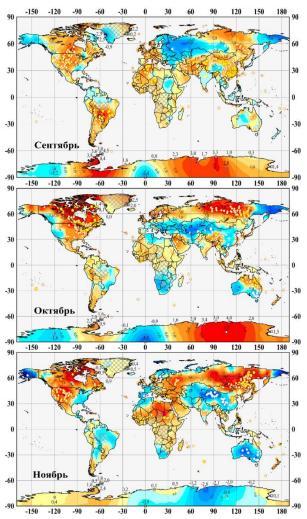
Летний сезон был экстремально теплым: четвертым в упорядоченных по убыванию рядах температуры для всей территории Земного шара и Северного полушария (HadCRUT4), и рекордно теплым – в рядах для территории суши (T3288 и CRUTEM4). В

крупных регионах мира (табл. 2.2) средняя по региону температура летнего сезона почти во всех регионах превысила уровень 90-го процентиля (кроме значений для континентов Южного полушария и антарктического пояса).

Наиболее выделяется умеренный пояс Северного полушария (25-65N) (рекордными были сезон в целом, июнь и июль, а август среди самых теплых был вторым). Из регионов наиболее выделяются северные континенты (Северная Америка и Евразия, оба с рангом 1, наибольшее значение в соответствующем временном ряду) и северная часть Тихого

температуры приземного воздуха: июнь – август, 2021 (T3288, °C).

Крупные положительные аномалии в течение всего сезона, в основном, были сосредоточены на континентах Северного полушария. В Северной Америке они охватили большую часть территории США и континентальной территории Канады с прилегающими акваториями Тихого и Атлантического океанов. В Евразии - это почти вся Европа и большая часть Азии (кроме Средней Сибири, Монголии, и Индии). На севере Африки – это Алжир и Саудовская Аравия. В Южном полушарии - это север Австралии, Антарктида, юг Аргентины и Чили.


Еще одна особенность лета наличие в течение всех трех месяцев больших областей с отрицательными аномалиями температуры, хотя и не столь экстремальными. Области отрицательных аномалий летом есть и на суше (практически на всех континентах), и на акваториях Мирового океана, более значительные - в Южном полушарии (Антарктида и Южная полярная область в целом). Межмесячные различия в характере температурных условий связаны, главным образом, с изменением локализации и интенсивности очагов

аномалий. Из месяцев выделяется июль - второй самый теплый месяц в целом по Земному шару (глобальная аномалия +0.27°C); и июнь - рекордно теплый в рядах для суши Земного шара и Северного полушария $(+0.51 \text{ и } +0.71^{\circ}\text{C}, \text{ соответственно}).$

На акваториях океанов положительные аномалии в течение всех трех месяцев сохранялись в северной части Тихого океана и в Атлантическом океане, у берегов Америки и к югу от экватора (особенно интенсивные в июле и в августе). В приэкваториальных широтах Тихого океана и в Индийском океане преобладали условия холоднее климатической нормы.

Осень 2021 г. (рис. 2.2, 2.3г) по всем наборам данных («только суша», «только море», «суша+море») стал третьим самым теплым для Земного шара, четвертым – для Северного полушария и пятым – для Южного (исключение: по данным Т3288 в Северном полушарии осень 2021 г. стала второй самой теплой).

Для северной части Атлантики (15-70N) и пояса южных умеренных широт (25-65S.) - сезон рекордно теплый, а каждый месяц осени – один из первых двух самых

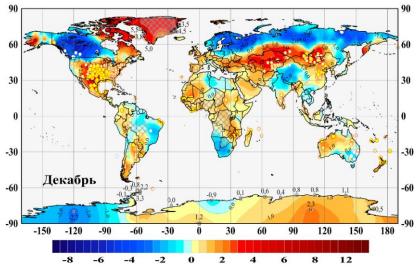
Рисунок 2.3г – Аномалии среднемесячной температуры приземного воздуха сентябрь—ноябрь 2021 (T3288, °C)

теплых. Соответственно, теплая осень оказалась и на территории южных континентов – в Южной Америке (особенно в сентябре) и в Африке (в сентябре и ноябре).

Отрицательные аномалии (в среднем по территории континентов) наблюдались в ЭТОМ сезоне сразу на нескольких континентах. Действительно холодными (по значениям в вероятностной шкале F) можно считать региональные температурные условия в ноябре – в Австралии (V=-1.39, F=18%) и Антарктическом поясе (V=-0.55°C; F=39%) и в сентябре – в Европе (V=-0.61°C, F=43%). Приближенно, в ноябре можно отнести к ним еще и условия в Антарктиде $(V = -0.34^{\circ}C, F = 54\%).$

Отрицательные аномалии осенью наблюдались на Аляске и Чукотке, на значительной части центральной Азии, в восточной части Китая, в западном секторе Антарктиды и на акваториях Тихого и Индийского океанов (39.2% доступных боксов ЮП). Однако отрицательные аномалии очень редко достигали уровня 5-го процентиля (не более 7% данных для отдельных регионов).

Наиболее теплыми месяцами были октябрь (средняя по Земному шару аномалия


составила +0.27 °C, ранг 3) и ноябрь (+0.26 °C, ранг 3), главным образом за счет континентов Северного полушария.

Крупные области отрицательных аномалий наблюдались от месяца к месяцу на южных континентах: на юге Африки (наибольшие в октябре), в Австралии и в Южной Америке (особенно крупные аномалия в октябре-ноябре). Локализация наиболее крупных аномалий, положительных и отрицательных, от месяца к месяцу менялась незначительно, в основном — на континентах (особенно заметно — в Евразии). При этом их интенсивность и площадь охвата могли измениться очень существенно. Области отрицательных аномалий в океанах Южного полушария менялись слабо, а их наибольшая интенсивность наблюдалась в октябре (во многих тихоокеанских боксах зафиксированы 5%-е экстремумы холода).

Декабрь 2021 г. (рис. 2.3д). В упорядоченном по убыванию ряду декабрьских температур, осредненных по суше Земного шара, декабрь занял 6-е место с аномалией 0.39°C (данные Т3288). Месяц оказался очень контрастным по сложившимся на континентах температурным условиям.

В Северной Америке сформировались два обширных интенсивных очага тепла на севере

Гренландии территории Канадского архипелага) И на юге континента (вся территория США Мексики, многочисленными экстремумами), a между материковой -30 ними, территории Канады обширный очаг холода экстремально холодно на -5°C). В (аномалии до Евразии, напротив,

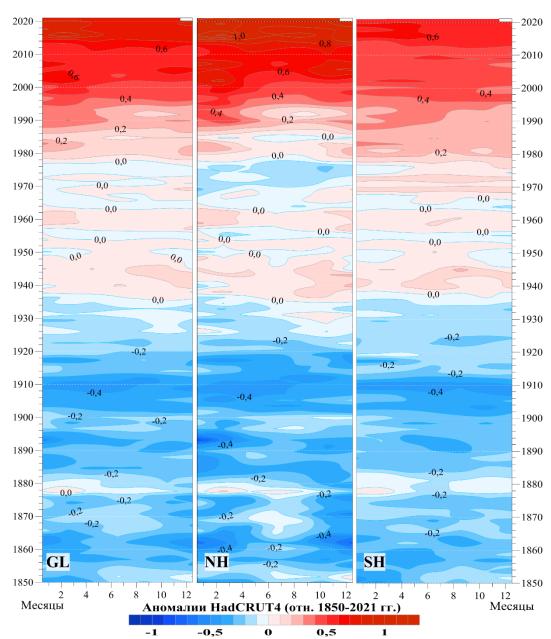
экстремально тепло в центре, холодно — на севере и юге. Контрастные условия хорошо

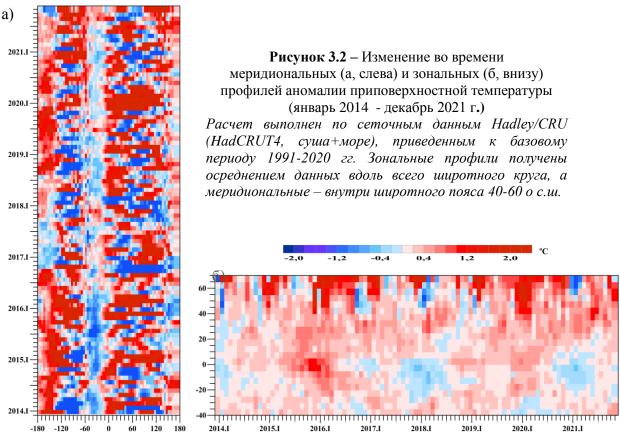
Рисунок 2.3д – Аномалии среднемесячной температуры приземного воздуха сентябрь–ноябрь 2021 (Т3288, °C)

просматриваются и в Южной Америке (холодно в Бразилии, тепло в Аргентине), и в Антарктиде (тепло на западе, холодно на востоке).

3. КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ, 1850-2021 гг.

Межгодовые и межмесячные изменения глобальной температуры. На рис. 3.1 представлены межгодовые (по вертикали) и межмесячные (по горизонтали) изменения глобально осредненных аномалий приповерхностной температуры (для Земного шара и полушарий) на протяжении всего периода инструментальных наблюдений (с 1850 г.).




Рисунок 3.1 – Изменение аномалий среднемесячной приповерхностной температуры, осредненной по всей территории (суша+море) Земного шара (GL), Северного (NH) и Южного (SH) полушарий, с января 1850 г. по ноябрь 2021 г. (по данным HadCRUT4, Hadley/CRU, UK). Аномалии выражены в отклонениях от средней за 1850-2021 гг

Можно видеть, что современное глобальное потепление стало особенно активным с середины 1990-х и наиболее ярко проявляется в Северном полушарии, особенно после 2010 года. В 2015-2021 гг. аномалии колеблются в интервале 0.7-1.6 °C в Северном

полушарии и 0.3-0.9 °C в Южном (аномалии приведены относительно базового периода 1850-2021 гг.).

Широтно-долготные разрезы. На рисунке 3.2 можно проследить зональные и меридиональные особенности изменения температурного режима последних лет (2014-2021 гг.), от месяца к месяцу.

Меридиональный профиль позволяет проследить изменение режима температуры океанов и континентов в умеренных широтах Северного полушария (40-60°с.ш.), от 180° з.д. до 180° в.д., то есть от восточного сектора Тихого океана, затем – территория США, Северная Атлантика, Евразия и западный сектор Тихого океана. В основном, до последнего сезона 2021 г. представленный период отличался холодными аномалиями в Атлантике и теплыми – в Тихом океане (за исключением периода с конца 2016 до конца 2017, когда в восточном секторе Тихого океана преобладали отрицательные аномалии температуры). Нынешней осенью, в северных умеренных широтах, впервые после 2017 г отрицательные аномалии опять отмечаются в восточном секторе Тихого океана (причем более интенсивные в сравнении с 2016-2017) и в европейской России (30Е-60Е), тогда как крупные положительные аномалии – в американском секторе и в Сибири (восточнее 60Е), а также до +0.4 °C в Атлантике.

Зональные профили (рис. 3.2б) четко указывают на повышение температуры в тропиках в 2015-2016 гг. (след мощного Эль-Ниньо), заметное понижение температуры в 2018 г. (не получивший развития Ла-Нинья) и два мощных потепления в 2019-2020 гг., особенно заметные в Северном полушарии.

2021 год отмечается более теплыми условиями в Северном полушарии (кроме высоких широт в начале года) и очередным понижением температуры в тропиках.

Временные ряды глобально осредненной температуры (рис. 3.3). Интегральную оценку интенсивности наблюдаемых крупномасштабных изменений приземной температуры дают глобально осредненные временные ряды для территории Земного шара и обоих полушарий и рассчитанные по ним коэффициенты линейного тренда.

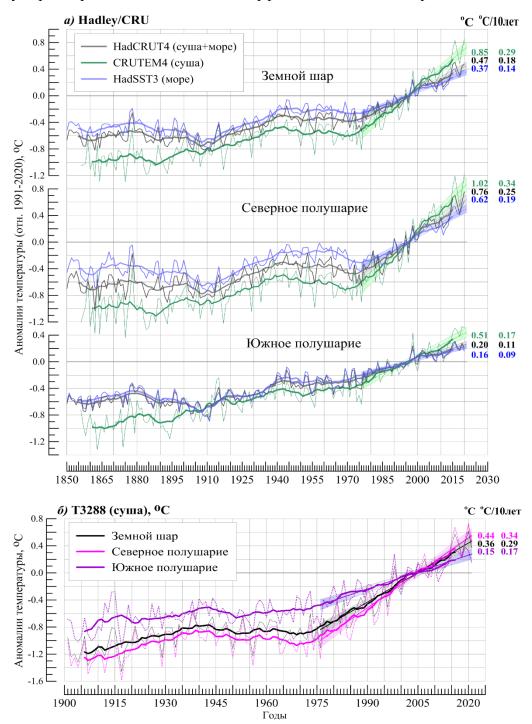


Рисунок 3.3 – Временные ряды среднегодовых аномалий приземной температуры, осредненных по территории Земного шара, Северного и Южного полушарий: а) по данным Hadley/CRU: HadCRUT4 (суша+море), CRUTEM4 (суша), HadSST3 (море) б) по данным ИГКЭ: T3288 (суша)

Для всех рядов показан ход 11-летних скользящих средних и линейный тренд за 1976-2021 гг. с 95% доверительным интервалом. Справа приведены числовые значения среднегодовых аномалий в 2021 г. (HadCRUT4 и HadSST3по ноябрь 2021г, см. Введение) и значения коэффициентов линейного тренда за 1976-2021 гг. (°C/10лет).

В таблице 3.1 приведены значения коэффициентов тренда (°С/10 лет) за два периода, 1976-2021 и 1922-2021, для всех 12 глобальных рядов (по 4 наборам данных для трех глобальных территорий), а сами ряды представлены на рис. 3.3 (только для Т3288). Отметим дополнительно, что приведенные здесь оценки тренда за 1976-2021 гг., в сравнении с аналогичными оценками за 1976-2020 гг. 6, незначительно уменьшились: на 0.001-0.014°С/10 лет. (Напомним, что оценки годовых трендов в рядах НаdCRUT4 и HadSST3, несравнимы с полученными ранее, до 2021 г., т.к. в них осреднение за 2021 г. выполнено без учета последнего значения, т.е. по данным за первые 11 месяцев – см. Введение).

Таблица 3.1 - Коэффициенты линейного тренда ($^{\circ}$ C/10 лет) глобальных временных рядов приземной температуры за 1976-2021 гг. и 1922-2021 гг.

(в среднем за год и по сезонам)

Регион		1	976-202	21		1922-2021					
Регион	Год	Зима	Весна	Лето	Осень	Год	Зима	Весна	Лето	Осень	
	1		HadCl	RUT4 (c	уша+м	ope)					
Земной шар	*0.176	0.166	0.183	0.180	0.178	0.086	0.089	0.094	0.082	0.080	
Северное полушарие	*0.249	0.236	0.252	0.252	0.257	0.097	0.104	0.108	0.091	0.085	
Южное полушарие	*0.104	0.097	0.115	0.107	0.100	0.075	0.073	0.079	0.073	0.075	
Т3288-ИГКЭ (суша)											
Земной шар	0.290	0.286	0.302	0.270	0.303	0.131	0.154	0.154	0.111	0.103	
Северное полушарие	0.344	0.344	0.374	0.314	0.346	0.143	0.176	0.176	0.117	0.104	
Южное полушарие	0.167	0.155	0.138	0.171	0.204	0.094	0.087	0.090	0.095	0.100	
			CR	UTEM ²	4 (суша))					
Земной шар	0.282	0.283	0.291	0.267	0.290	0.126	0.140	0.146	0.110	0.107	
Северное полушарие	0.338	0.346	0.366	0.311	0.333	0.140	0.164	0.172	0.114	0.108	
Южное полушарие	0.169	0.158	0.141	0.177	0.204	0.099	0.093	0.096	0.103	0.104	
			He	adSST3	(море)						
Земной шар	*0.139	0.124	0.138	0.154	0.144	0.067	0.063	0.068	0.071	0.068	
Северное полушарие	*0.192	0.165	0.167	0.222	0.217	0.067	0.057	0.062	0.078	0.071	
Южное полушарие	*0.092	0.090	0.112	0.090	0.078	0.071	0.072	0.076	0.067	0.069	

Примечание. Звездочкой (*) показаны оценки, полученные без учета значения за декабрь 2021 г.

Для сравнения интенсивности (средней скорости) потепления в разных группах данных, в табл. 3.2 приведены показатели k_1 - k_3 , рассчитанные как отношение соответствующих коэффициентов тренда (см. первый столбец табл. 3.2). Эти показатели

http://climatechange.igce.ru/index.php?option=com_docman&task=cat_view&gid=31&Itemid=76&lang=r

21

⁶⁾ Аналогичные оценки за 1976-2020 гг. доступны на сайте ИГКЭ в годовом обзоре «2020. Изменение климата Земного шара: год (январь-декабрь)»

количественно уточняют выводы, основанные на визуальном сопоставлении глобальных временных рядов (рис. 3.3) и оценок трендов (табл. 3.1).

Из этих оценок видно, что:

- Потепление (и современное, и в целом за 100 лет) над сушей протекает быстрее, чем над океанами: k_1 =1.32-2.09 (k_1 больше 1). В последние 40-50 лет этот контраст («континенты океаны») в Южном полушарии существенно усилился (1.8 против 1.3, эта особенность проявляется во все сезоны), а в Северном полушарии, наоборот, стал слабее (1.8 против 2.1, особенность проявляется во все сезоны, кроме осени) и в результате стал в обоих полушариях примерно одинаков ($k_1 \approx 1.8$);
- в Северном полушарии средняя скорость потепления выше, чем в Южном: k_2 =1.4-2.0, за исключением поверхности океанов на 100-летнем интервале здесь k_2 =0.94 (меньше 1, это исключение ярко проявляется зимой и весной); для современного потепления k_2 ≈2.0 и на суше, и на поверхности океанов;
- современное потепление ускорилось по сравнению со 100-летним в k_3 =2.4-2.8 раза в Северном полушарии и только в k_3 =1.3-1.8 раза в Южном. При этом в Северном полушарии ускорение происходит более интенсивно на поверхности океанов (2.87 против 2.41), а в Южном над сушей (\approx 1.7 против 1.3). Похожие особенности наблюдаются во все сезоны.

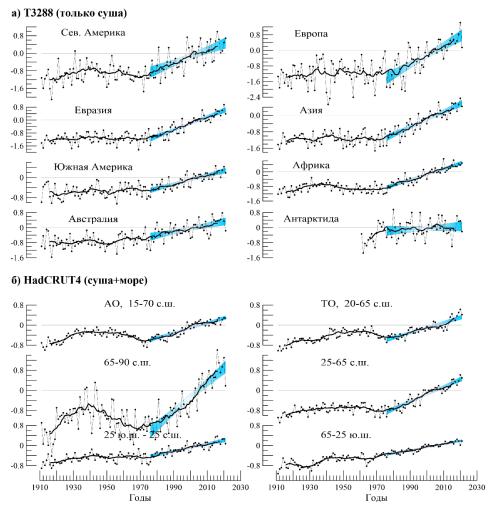
Таблица 3.2 – Сравнение средней скорости глобального потепления (у поверхности) в разных группах данных

	Показатель			1976	-2021					1922	-2021		
	Показатель	3]	Ш	C	Π	Ю	ЭΠ	31	Ш	C	П	Ю	П
			2.31		2.08		1.72		2.44		3.09		1.21
	$b_{T3288}/b_{HadSST3}$	2.09	2.38	1.79	2.15	1.82	1.52	1.96	1.83	2.13	2.29	1.32	0.99
$\mathbf{k_1}$	OT3288 O HadSST3	2.07	1.75	1.77	1.41	1.02	1.88	1.70	1.56	2.13	1.50	1.52	1.42
			2.10		1.59		2.62		1.51		1.46		1.45
			2.28		2.10		1.76		2.22		2.88		1.29
	$b_{CRUTEM4}/b_{HadSST3}$	2.03	2.53	1.76	2.17	1.84	1.97	1.88	2.07	2.09	2.48	1.39	1.44
	CRUTEM4 O HadSST3	2.03	1.73	1.70	1.40	1.04	1.95	1.00	1.55	2.09	1.46	1.57	1.54
			2.01		1.53		2.62		1.57		1.52		1.51
		1976-2021								1922	-2021		
		T3:	288	CRU	TEM	Had	SST	T32	288	CRU	TEM	Had	SST
\mathbf{k}_2	$b_{C\Pi}/b_{HO\Pi}$		2.22		2.19	2.09	1.83		2.02		1.76		0.79
2	CIFORNI	2.06	2.71	2.00	2.11		1.91	1.52	1.96	1.41	1.46	0.94	0.85
		2.00	1.84	2.00	1.76	2.09	2.44	1.54	1.23	1.41	1.11	0.94	1.16
			1.70		1.63		2.78		1.04		1.04		1.03
				C	П					Ю	П		
		T32	288	CRU	TEM	Had	SST	T32	288	CRU	TEM	Had	SST
\mathbf{k}_3	$b_{1976-2021}/b_{1921-2021}$		1.95		2.11		2.89		1.78		1.70		1.25
113	0 19/0-2021/ 0 1921-2021	2.41	2.13	2.41	1.97	2.87	2.26	1.78	1.53	1 71	1.37	1.30	1.00
		2.41	2.68	2.41	2.73	4.07	2.85	1./0	1.80	1.71	1.72	1.50	1.36
			3.33		3.08		3.06		2.04		1.96		1.13

Примечание. Жирным шрифтом выделены значения «годовых» показателей (получены сравнением трендов среднегодовых глобальных температур), правее – «сезонные» показатели (сверху вниз: зима-весна-лето-осень)

4. ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2021 гг.

Временные ряды (рис. 4.1, 4.2, 4.3) регионально осредненных данных рассчитаны по методике ИГКЭ, по сеточным данным HadCRUT4 (для пяти широтных поясов и северных частей Атлантического и Тихого океанов) и по данным станционных наблюдений Т3288 (для всех шести континентов, а также для Европы и Азии отдельно). Данные до 1911 г. не приводятся, т.к. представляются недостаточно полными и надежными (особенно над океанами). На всех временных рядах показаны тренды за период 1976-2021 гг., условно принятый за период современного глобального потепления. Числовые оценки трендов приведены в таблицах 4.1, 4.2. Более подробно проследить особенности многолетнего хода приземной температуры в каждом регионе можно по временным рядам на рисунках 4.1 –4.3.


Таблица 4.1 – Коэффициенты линейного тренда (1976-2021 гг., ${}^{o}C/10$ лет) регионально осредненных аномалий приземной температуры (в целом за год и по сезонам)

Регион	Год	Зима	Весна	Лето	Осень
	HadCRUT	4 (суша+мор	ne)		
Атлантика (15-70N)	0.197	0.200	0.172	0.199	0.227
Тихий океан (20-65N)	0.202	0.164	0.169	0.244	0.231
Арктический пояс (65-90N)	0.574	0.560	0.647	0.433	0.622
Умеренный пояс СП (25-65N)	0.294	0.268	0.298	0.312	0.303
Тропики (25S-25N)	0.143	0.141	0.145	0.144	0.140
Умеренный пояс ЮП (65-25S)	0.124	0.094	0.123	0.110	0.101
Антарктический пояс (90-65S)	0.088	-0.062	-0.021	0.131	0.279
	T328	8 (суша)			
Северная Америка	0.294	0.404	*0.163	0.276	0.335
Евразия	0.399	0.341	0.515	0.373	0.370
Южная Америка	0.177	0.164	0.135	0.162	0.230
Африка	0.298	0.266	0.345	0.287	0.298
Австралия	0.180	0.152	0.121	0.168	0.270
Антарктида	0.052	-0.037	-0.037	0.058	0.216
Европа	0.487	0.541	0.444	0.518	0.448
Азия	0.373	0.286	0.533	0.330	0.347

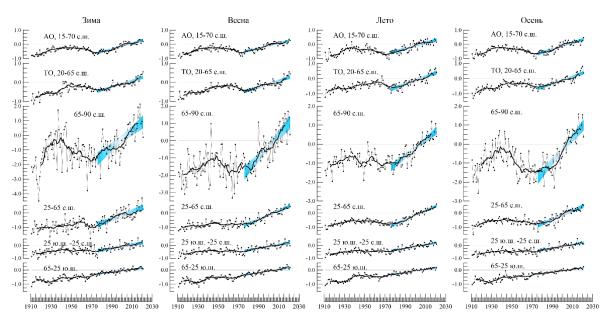
Примечание. Оценки, статистически значимые на 1% уровне ($\alpha \le 1\%$), приведены без выделения. Символом (*) выделены оценки с 5%-м уровнем значимости. Затенены значения, не значимые даже на 10%-м уровне (высокая вероятность «ложного» тренда» т.е. высокая вероятность отсутствия ненулевого тренда любого знака). Шрифтом синего цвета выделены отрицательные значения коэффициентов тренда (тенденция к похолоданию).

Оценки тренда в таблицах 3.1, 4.1, уверенно (с доверительной вероятностью не ниже 99%) указывают на тенденцию к потеплению глобального климата во все сезоны, в целом по Земному шару и полушариям, а также в среднем по территории всех рассмотренных крупных регионов, кроме Южной полярной области. В Антарктическом поясе (и в Антарктиде) оценки указывают на статистически значимое потепление только осенью, тогда как в остальные три сезона они статистически не значимы даже на 10%-м уровне (зимой, весной, летом в Антарктиде и весной в Антарктическом поясе α >50%), а зимой и весной еще и указывают на тенденцию к похолоданию.

Регион наиболее интенсивного потепления — Арктический широтный пояс (суща+море), где оценки колеблются от $+0.433^{\circ}$ C/10 лет (летом) до $+0.647^{\circ}$ C/10 лет (весной). Из континентов выделяется Евразия — тренд в среднем за год 0.399° C/10 лет, весной 0.515° C/10 лет. В Европе наиболее интенсивно потепление зимних сезонов (0.541° C/10 лет), в Азии — весенних (0.533° C/10 лет). Наименее выражено потепление на континентах Южного полушария: в Антарктиде (0.052° C/10 лет) Австралии (0.180° C/10 лет) и Южной Америке (0.177° C/10 лет).

Рисунок 4.1 – Временные ряды пространственно осредненных среднегодовых аномалий приземной температуры для континентов (а), северных частей Атлантического и Тихого океанов и основных широтных поясов земного шара (б).

Аномалии приведены в отклонениях от средних за 1991—2020 гг. Сглаженные кривые (жирная линия) получены 11-летним скользящим осреднением. Показан линейный тренд за 1976-2021 гг. с 95%-м доверительным интервалом (голубая заливка). Расчет пространственно осредненных аномалий выполнен по методике ИГКЭ по данным: а) Т3288 (для континентов);б) НаdCRUT4 (для океанов и широтных поясов).


В таблице 4.2 приведены оценки региональных трендов, но для каждого календарного месяца (рассчитаны по соответствующим региональным временным рядам среднемесячных аномалий). Можно видеть, что эти оценки хорошо согласуются с сезонными оценками (табл. 4.1) и дополняют их. Так, видна большая неоднородность в структуре изменчивости температурного режима над сушей в сравнении с океанами. Сезонные оценки тренда (°С/10 лет) колеблются в диапазонах: 0.164-0.244 и 0.172-0.227 в северных частях Тихого и Атлантического океанов и 0.343-0.515 и 0.163-0.404 - в Евразии

и Северной Америке, а диапазон колебаний оценок от месяца к месяцу составляет, соответственно: 0.161-0.245, 0.167-0.234 и 0.295 - 0.660, 0.142 -0.502 (°C/10 лет).

Таблица 4.2 — Сезонный ход коэффициентов линейного тренда (${}^{o}C/10$ лет) регионально осредненных среднемесячных аномалий приземной температуры, период оценки тренда: 1976-2021

Регион	Месяцы												
Гегион	I	II	III	IV	V	VI	VII	VIII	IX	X	X1	XII	
HadCRUT4 (суша+море)													
AO,15-70 N	0.202	0.191	0.167	0.180	0.168	0.174	0.187	0.234	0.226	0.245	0.209		
TO,40-60 N	0.150	0.163	0.148	0.161	0.199	0.220	0.255	0.259	0.245	0.227	0.220		
65-90 N	0.440	0.584	0.685	0.753	0.495	0.497	0.377	0.427	0.439	0.732	0.726		
25-65 N	0.275	0.280	0.354	0.274	0.266	0.295	0.311	0.329	0.313	0.311	0.285		
25 S-25 N	0.136	0.136	0.138	0.152	0.143	0.146	0.142	0.146	0.139	0.144	0.141		
65-25 S	0.098	0.097	0.115	0.132	0.112	0.117	0.106	0.105	0.093	0.109	0.097		
90-65 S	-0.072	*-0.066	-0.057	-0.072	0.092	-0.028	0.116	0.322	0.276	0.354	0.206		
					T3288	(суша)							
С.Америка	0.578	0.142	0.228	0.090	0.166	0.299	0.267	0.264	0.335	0.314	0.358	0.502	
Евразия	0.295	0.482	0.660	0.495	0.388	0.387	0.352	0.380	0.339	0.413	0.359	0.239	
Ю.Америка	0.178	0.149	0.142	0.175	0.086	0.195	0.109	0.179	0.309	0.200	0.186	0.157	
Африка	0.234	0.274	0.345	0.325	0.337	0.320	0.296	0.238	0.255	0.296	0.335	0.288	
Австралия	0.249	0.068	0.127	*0.197	0.033	0.117	0.277	0.109	0.302	0.328	0.187	0.139	
Антарктида	-0.048	-0.008	-0.006	-0.123	0.039	-0.183	0.133	0.245	0.203	*0.252	*0.185	-0.074	
Европа	*0.497	*0.594	*0.443	0.501	0.381	0.456	0.523	0.569	0.430	0.430	*0.485	*0.535	
Азия	*0.239	0.448	0.712	0.501	0.386	0.363	0.304	0.324	0.311	0.405	*0.327	0.162	

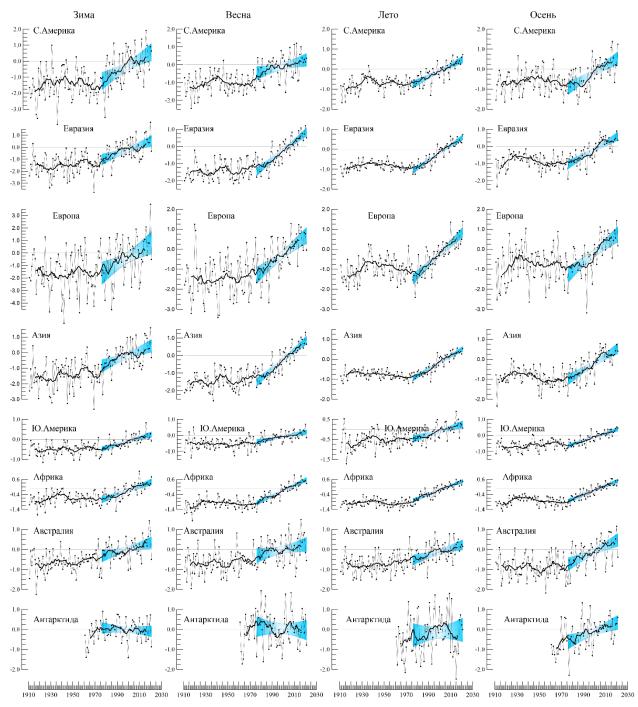

Примечание. Условные обозначения см. таблицу 4.1

Рисунок 4.2 – См. рисунок 4.1, но для сезонных аномалий и только для северных частей Тихого и Атлантического океанов и широтных поясов Земного шара

Вывод о потеплении осенних сезонов в Антарктическом поясе становится менее уверенным, если учесть, что оценки статистически значимы на 1%-м уровне только в среднем за сезон и в октябре-ноябре, а в сентябре уровень значимости составляет лишь 12%. Аналогично, в среднем по территории Антарктиды сезонный тренд значим на 1%-м уровне, тренд в октябре-ноябре – на 5%-м, а в сентябре -только на 22%-м.

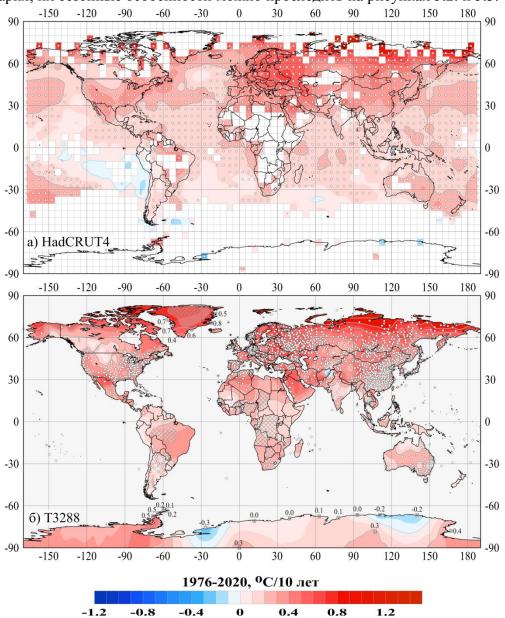

Обращают внимание и оценки тренда для Европы в зимние месяцы: при высоких значениях коэффициентов тренда они статистически значимы только на 5%-м уровне. Это, по-видимому, может говорить о высокой межгодичной изменчивости температурного режима в этом регионе.

Рисунок 4.3 – См. рисунок 4.1, но для сезонных аномалий и только для континентов Земного шара

5. ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2021 гг.

Оценки получены по данным наблюдений на 2389 станциях (массив Т3288) и в центрах 1378 боксов (массив HadCRUT4), для которых временные ряды охватывают не менее 35 лет наблюдений (включая последний). На рисунке 5.1 приведено географическое распределение локальных коэффициентов тренда, а в таблице 5.1 – их количественное распределение по крупным регионам земного шара, включая Земной шар в целом и полушария; их сезонные особенности можно проследить на рисунках 5.2. и 5.3.

Рисунок 5.1 - Пространственное распределение коэффициентов линейного тренда среднегодовой температуры у поверхности Земного шара, 1976-2021 гг. (°С/10 лет).

Использованы данные: а) HadCRUT4 - сеточные данные Hadley/CRU, UK (суша+море); б) T3288 — станционные данные ИГКЭ (только суша). Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений. В точках расположения станций Антарктиды и Гренландии приведены числовые значения коэффициентов тренда. Белыми кружками выделены боксы/станции, для которых тренд статистически значим на 1%-м уровне. Среднегодовые аномалии за 2021год получены без учета данных за декабрь 2021 г. (среднегодовые значения рассчитаны по данным за первые 11 месяцев (см. Введение)

Тенденция к потеплению по-прежнему наблюдается почти на всей территории земного шара (рис. 5.1) — положительные тренды составляют около 97% всех локальных оценок (с учетом и без учета океанов). Все детали распределения локальных оценок по регионам, направленности тренда и его статистической значимости можно найти в табл. 5.1.

Таблица 5.1 – Распределение локальных оценок тренда за 1976-2021 гг. в зависимости от знака коэффициента тренда \boldsymbol{b} и уровня значимости \boldsymbol{a}

Регион		NN		<i>b</i> < 0		b = 0	b > 0			
		1414	всего	$\alpha \leq 0.05$	$\alpha \ge 0.1$	<i>D</i> = 0	всего	$a \le 0.05$	$\alpha \ge 0.1$	
HadCRUT4 (суша+море)										
ЗШ		1378	2.5	0.8	1.5	0.5	97.0	83.8	10.2	
СП	СП		0.2	-	0.1	0.1	99.7	91.5	5.4	
ЮП	ЮП		6.7	2.2	4.0	1.2	92.1	70.0	18.8	
Атлантика 70N)	Атлантика (15- 70N)		1	1	1	-	100.0	94.7	3.0	
Тихий оке 65N)	Тихий океан (20- 65N)		ı	ı	ı	-	100.0	100.0	-	
5 65-90N	1	77	-	-	-	-	100.0	98.7	1.3	
25-65N 25S-25 65-25S	1	524	-	-	-	-	100.0	92.0	5.0	
25S-25	N	536	3.5	0.2	3.0	0.6	95.9	83.6	10.1	
65-25S		228	5.7	3.1	2.2	1.8	92.5	63.2	24.1	
90-65S		13	23.1	23.1	-	-	76.9	38.5	38.5	
Т3288 (только суша)										
Земной і	пар	2389	2.3	0.6	1.5	0.3	97.3	87.7	6.7	
С. полуш	іарие	2073	1.2	0.3	0.8	0.2	98.6	90.9	5.4	
Ю. полу	Ю. полушарие		10.1	2.8	6.3	1.3	88.6	67.2	15.5	
С.Амери	ка	417	2.2	0.5	1.7	0.0	97.8	72.7	18.9	
Евразия		1468	0.7	0.1	0.5	0.1	99.2	96.0	1.7	
Ю.Амер	Ю.Америка		12.9	2.2	8.6	1.1	86.0	63.4	18.3	
Африка	Африка		2.0	1.0	1.0	1.0	97.0	94.1	3.0	
Австралия		125	12.0	3.2	8.8	2.4	85.6	63.2	14.4	
Антарктида		17	17.6	11.8	-	0.0	82.4	35.3	29.4	
Европа		531	0.2	-	0.2	0.0	99.8	99.2	-	
Азия		946	1.0	0.2	0.6	0.2	98.8	94.3	2.6	
Арктика	Арктика		Ī	-	-	0.0	100.0	98.7	0.7	

Область наиболее интенсивного потепления — Арктика: все оценки тренда положительны, 98.7% из них статистически значимы на 5%-м уровне. На суше, вдоль побережья Северного Ледовитого океана практически всюду тренд достигает +0.6-0.8°С/10 лет и более.

Из континентов, как и по региональным оценкам (табл. 4.1, 4.2), выделяется Европа, где 99.8% данных указывают на потепление, притом 99.2% статистически значимы на 5%-м уровне. В Восточной Европе скорость потепления достигает +0.7-0.8°С/10 лет. Близкая ситуация в Азии и, как результат, в Евразии в целом. Большая часть

океанической поверхности в Северном полушарии и тропическом поясе (кроме восточного сектора Тихого океана у побережья Южной Америки) также характеризуется статистически значимыми на 1%-м уровне трендами к потеплению. Интенсивное потепление также отмечается в Северной Атлантике и на севере Тихого океана (до 0.3-0.4°C/10 лет, рис. 5.1).

Таблица 5.2 – Распределение статистически значимых локальных оценок тренда за 1976-2021 гг. на 5%-уровне (в среднем по сезонам)

		NN- число	о Количество статистически значимых трендов с $α ≤ 5$ %								
Регион		боксов/ станций	Зима		Весна		Лето		Осень		
		в регионе	b<0	b>0	b<0	b>0	b<0	b>0	b<0	b>0	
	HadCRUT4 (суша+море)										
ЗШ		1378	1.3	65.1	0.4	77.5	1.1	83.7	0.9	81.7	
СП		884	0.1	66.6	ı	80.8	ı	92.6	ı	89.3	
ЮП		494	3.4	62.3	1.0	71.7	3.0	67.6	2.6	68.2	
Атла 70N)	нтика (15-	132	-	82.6	-	73.5	-	88.6	-	101.5	
Тихи 65N)	ій океан (20-	151	-	83.4	-	96.0	-	100.0	-	98.7	
ıca	65-90N	77	-	81.8	-	96.1	-	115.6	-	127.3	
Широтные пояса	25-65N	524	-	57.8	-	79.0	-	89.9	-	84.7	
LHPI	25S-25N	536	1.5	76.7	-	78.7	0.6	85.8	1.1	82.8	
Гиро	65-25S	228	3.5	52.6	1.8	68.4	3.9	57.5	3.1	57.9	
	90-65S	13	15.4	ı	7.7	15.4	23.1	15.4	ı	61.5	
				Т3288 (то	лько су	ша)					
ЗШ		2389	0.7	57.1	1.0	77.1	0.7	80.4	0.6	81.5	
СП		2073	0.4	57.6	0.3	82.3	0.4	84.2	0.5	81.7	
ЮП		317	2.2	53.6	5.0	43.2	2.5	55.5	1.6	79.8	
C. A	мерика	417	-	57.6	1.0	30.2	1.0	70.5	0.7	72.4	
Евра	RN E	1468	0.4	54.4	0.1	96.1	0.1	86.0	0.3	82.2	
Ю. Америка		93	3.2	72.0	3.2	48.4	6.5	24.7	5.4	84.9	
Африка		101	2.0	80.2	1.0	105.0	1.0	119.8	1.0	111.9	
Австралия		125	1.6	32.0	8.8	27.2	0.8	60.8	-	75.2	
Антарктида		17	17.6	5.9	-	17.6	11.8	17.6	-	41.2	
Европа		531	-	73.4	-	98.7	-	94.7	-	97.6	
Азия		946	0.6	43.6	0.2	94.7	0.2	81.2	0.5	73.6	
Арктика		149	-	73.8	-	95.3	-	89.3	-	98.0	

Тенденция к похолоданию на территории земного шара отмечена на 2.5% боксов (2.3% станций), с уровнем значимости α ≤0.05 всего 0.8% (0.6%). Согласно станционным данным (Т3288, только суша), в полярном и умеренном широтном поясе, как уже отмечено выше, не обнаружено ни одной станции с тенденцией к похолоданию.

На территории континентов таких станций 15 (табл. 5.1) — 6 в Северном полушарии и 9 в Южном полушарии. Практически все остальные станционные оценки, указывающие на тенденцию к похолоданию, не достигают и -0.1° C/10 лет и статистически не значимы. На акваториях океанов отрицательный тренд зафиксирован в Тихом океане у побережья Южной Америки (до -0.1° C/10 лет) и на юго-западе Атлантики (до -0.3° C/10 лет у берегов Огненной Земли.

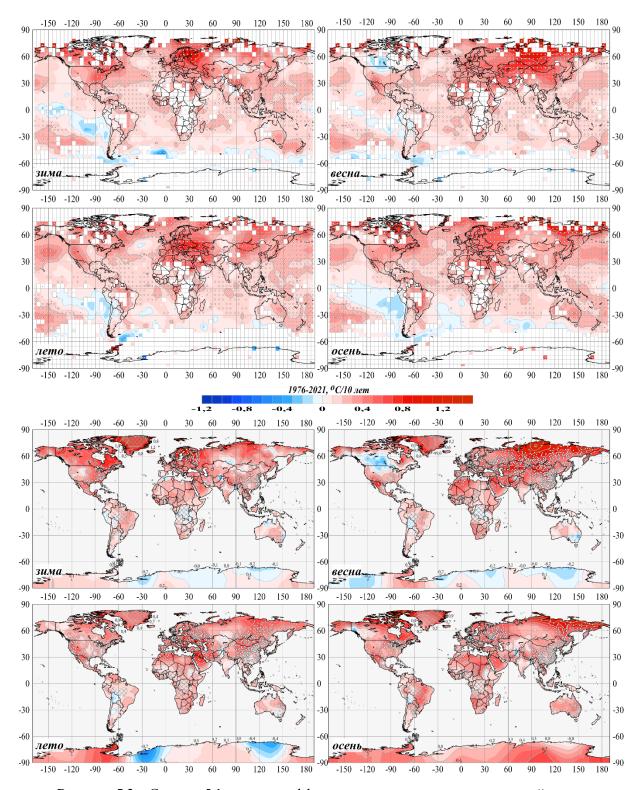
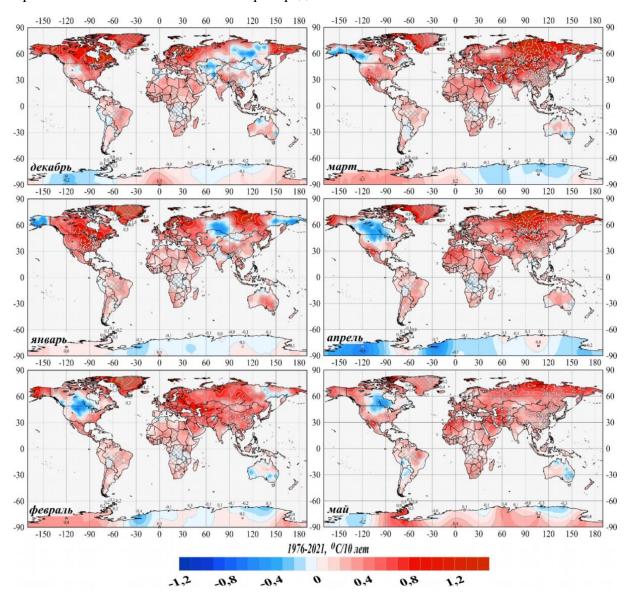



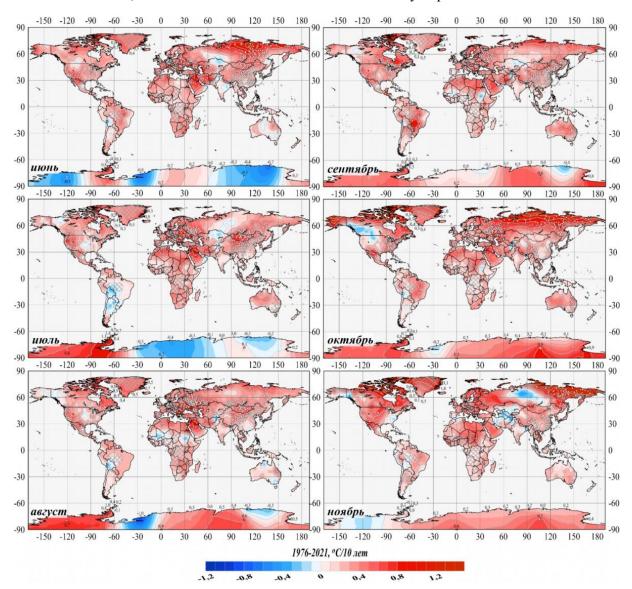
Рисунок 5.2 – См. рис. 5.1, но для коэффициентов тренда сезонных аномалий температуры

Зима (рис.5.2, 5.3а). В географическом распределении трендов для зимнего сезона, в среднем и для каждого месяца, преобладает тенденция к потеплению. Наиболее интенсивное потепление (более 1.0 С/10 лет, $\alpha = 1\%$) – в Гренландии, на западе США, в Скандинавии, в Восточной Европе, в Юго-Восточной Азии. В декабре значительный тренд (тенденция к потеплению) фиксируется на северо-востоке Евразии, в январе – в Якутии и на Дальнем Востоке (значим на 1% уровне), в феврале – на западе и в центре АЧР. На сезонной карте тренд к похолоданию просматривается только в небольших областях Антарктиды, в центре Евразии и в восточной части Тихого океана (у побережья

Южной Америки). В течение всего сезона, на всех континентах выделяются области отрицательного тренда. Наиболее значительные из них - в Северной Америке (до -1° C/10 лет) и Сибири (до -0.8° C/10 лет). На акваториях океанов в каждом из зимних месяцев сохраняются особенности сезонного распределения.

Рисунок 5.3а – См. рис. 5.2, но для трендов среднемесячной температуры зимнего (слева) и весеннего (справа) сезонов и только на континентах (Т3288, ИГКЭ)

Весна (рис.5.2, 5.3a). Положительным статистически значимым трендом охвачена практически вся территория Евразии (до +1.6°C /10 лет на севере Красноярского края), за исключением некоторых районов Восточно-Европейской равнины и юго-восточной Азии.


Обширная область с тенденцией к похолоданию выделяется в Северной Америке и в Антарктиде, но обе они статистически не значимы.

Лето (рис.5.2, 5.3б). Как и в другие сезоны, летом преобладает тенденция к потеплению. Наиболее высокая скорость потепления в течение всего сезона отмечается в Европе (до +0.9°C/10 лет), Малой и Передней Азии, Монголии (до 0.8°C /10 лет), Антарктиде (до 1.1°C/10 лет на Антарктическом полуострове) и на территории США. В июне статистически значимое потепление отмечается на большей части АЧР.

Статистически значимые тенденции к похолоданию получены в Восточной Антарктиде и в Атлантическом океане в районе Огненной Земли (около -0.4°С /10 лет), в июле в Аргентине, а также в течение всех трех месяцев в Западной Сибири, на территории Средней Азии и в Боливии.

Осенью (рис.5.2, 5.3б), практически в каждом месяце, интенсивное статистически значимое потепление происходит в Арктике, на Дальнем Востоке (до 2.1°C /10 лет в Восточной Сибири), на территории Европы (до 0.8°C/10 лет) и в Юго-Восточной Азии, а также в США (в сентябре и в октябре).

Тенденция к похолоданию (до -0.5°С/10 лет), как правило, статистически незначимая, отмечена в Антарктиде (в сентябре на Земле Уилкса), на территории Канады и США (в октябре), в Сибири и Центральной Азии (в ноябре). На сезонной карте им соответствуют области с практически нулевым трендом. Слабые отрицательные тренды, также незначимые, отмечены также в океанах Южного полушария.

Рисунок 5.36 – См. рис. 5.2, но для трендов среднемесячной температуры летнего (слева) и осеннего (справа) сезонов и только на континентах (Т3288, ИГКЭ)

ЗАКЛЮЧЕНИЕ⁷⁾

- 1. В целом по Земному шару (с учетом континентов и океанов) 2021 год был шестым среди самых теплых лет по всем наборам данных; шестым он был и для суши Северного полушария, для моря Северного полушария пятым. В Южном полушарии 2021 год был более прохладным ранг по разным наборам данных от 8 до 11. Рекордно теплыми в истории наблюдений остаются 2016 и 2020 гг., с очень близкими значениями аномалий глобальной температуры, которые для суши Земного шара составили, соответственно, +0.617, +0.570°С (данные Т3288) и +0.580, +0.558 °С (данные СRUTEM4).
- 2. В 2017-2018 гг., после рекорда 2016 г., произошло заметное понижение температуры на суше обоих полушарий: на 0.334, 0.351 °C по Земному шару (данные Т3288, CRUTEM4, суша). В 2021 г., в сравнении с 2020 г., понижение температуры составило -0.254°C
- 3. В 2021 году на территории Земного шара, по-прежнему, доминируют положительные аномалии температуры (65-70% всех наблюдений, с учетом и без учета океанов). Среди них 27% оказались выше 95-го процентиля (5%-е экстремумы тепла), в том числе 7% стали для своих пунктов рекордными.
- 4. Наиболее крупные положительные аномалии сосредоточены на северных континентах: в Северной Америке, в Африке и Евразии (в основном, в Азии). Из широтных поясов выделяются северные умеренные широты (25-65N), за счет отмеченных выше континентов, а также северных частей Атлантического и Тихого океанов.
- 5. Отрицательные аномалии (около 25% всех наблюдений) также наблюдались и на суше, и на акваториях океанов. На суше это: Аляска, запад Канады, север Евразии, север Южной Америки, юг Африки, Австралия (на 9% станций юго-восточного побережья фиксировались 5%-е экстремумы холода), Антарктида. На поверхности океанов отрицательные аномалии наблюдались в тропических широтах Тихого (у берегов Американского континента) и Индийского (у берегов Африки и Австралии) океанов. В Австралии 5%-е экстремумы холода фиксировались в течение всех сезонов, особенно заметно весной (21% станций) и зимой (10%).
- 6. Из сезонов выделяется рекордно теплое лето (глобальная средняя аномалия температуры над сушей Земного шара $+0.50^{\circ}$ C), в основном, за счет Северного полушария (северные континенты и умеренные широты обоих северных океанов). Зима была рекордно теплой в северной части Тихого океана ($+0.55^{\circ}$ C), осень в северной Атлантике ($+0.47^{\circ}$ C) и в широтном поясе 25-65S ($+0.24^{\circ}$ C).
- 7. На большей части Земного шара продолжается потепление: положительные тренды составляют около 97% всех локальных оценок. Регионы наиболее интенсивного потепления: Арктический пояс (65-90N) и Европа, где средняя скорость потепления за период 1976-2021 гг. составила, соответственно, 0.574°C/10 лет и 0.487°C/10 лет.
- 8. Глобальное потепление (и современное, 1976-2021 гг., и в целом за 100 лет), в Северном полушарии протекает быстрее, чем в Южном (в 1.4-2.0 раза) и над сушей протекает быстрее, чем над океанами (в 1.3-2.1 раза). В последние 40-50 лет контраст

_\

⁷⁾ Напомним, что аномалии в бюллетене рассчитаны относительно базового периода 1991-2020 гг. (если не указано иное)

«континенты - океаны» в Южном полушарии существенно усилился, а в Северном, напротив, ослаб, так что в настоящее время стал в обоих полушариях примерно одинаков. Современное потепление ускорилось по сравнению со 100-летним в 2.4-2.8 раза в Северном полушарии и только в 1.3-1.8 раза – в Южном.

9. Приведенные в бюллетене глобальные оценки температурного режима у поверхности земли в 2021 г., полученные по данным массива Т3288 (данные ФГБУ «ИГКЭ»), хорошо согласуются с оценками по одноименным данным массива CRUTEM4 (данные Hadley/CRU, один из базовых массивов ВМО). Вывод основан на сравнении погодичных данных и статистических оценок, представляемых в каждом выпуске.