
Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФГБУ «Институт глобального климата и экологии имени академика Ю.А. Израэля»

Бюллетень мониторинга изменений климата Земного шара

Приземная температура

ЛЕТО 2025уг-уш

ОГЛАВЛЕНИЕ^{1,2}

1.	ВВЕДЕНИЕ	3
2.	ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ЛЕТОМ 2025 г. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ	6
3.	КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА, 1850-2025 гг. (летний сезон)	13
4.	ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2025 гг. (летний сезон)	18
5.	ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2025 гг. (летний сезон)	22
6	ЗАКПЮЧЕНИЕ	26

-

¹ Бюллетень подготовлен в ФГБУ «ИГКЭ». Данные текущих наблюдений (сводки КЛИМАТ и СИНОП из оперативного потока) подготовлены в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ». Все Бюллетени мониторинга климата, сезонные и годовые, выпускаемые в ФГБУ «ИГКЭ», размещаются на сайте http://www.igce.ru/climatechange. В выпуске принимали участие сотрудники отдела мониторинга и вероятностного прогноза климата ФГБУ «ИГКЭ»: М.Ю. Бардин, Э.Я. Ранькова (руководители), О.Ф. Самохина, У.И. Антипина, В.Д. Смирнов, Т.В. Платова

² На обложке приведено поле средних сезонных аномалий температуры приземного воздуха над сушей Земного шара: лето 2025 г. (данные Т3288, ИГКЭ)

1. ВВЕДЕНИЕ

В настоящем бюллетене представлены данные о климатических аномалиях температурного режима летнего сезона 2025 г. у поверхности Земного шара и обновленные (с учетом этих данных) оценки тенденций в его изменении в течение 1976–2025 гг. Оценки приведены для летнего сезона в целом и каждого из месяцев (июнь, июль, август).

Бюллетень подготовлен в рамках оперативного мониторинга климата GCCM (Global Climate Change Monitoring) в ФГБУ «ИГКЭ»³ с использованием данных метеорологических наблюдений о среднемесячной температуре приземного воздуха на 3288 наземных станциях земного шара (массив Т3288, данные ИГКЭ; массив сформирован и ежемесячно пополняется в процессе оперативного мониторинга на основе сводок КЛИМАТ, СИНОП).

Параллельно в бюллетене приводятся оценки по данным о приповерхностной температуре (температура приземного воздуха над сушей и поверхностного слоя воды на акваториях океанов) на глобальной сети 5-градусных боксов, охватывающей всю территорию земного шара, включая континенты и океаны (массивы CRUTEM5, HadSST4 и объединяющий их массив HadCRUT5 – данные Великобритании⁴). Из этих данных, кроме сеточных массивов, в бюллетене используются глобальные временные ряды того же наименования HadCRUT5, CRUTEM5, HadSST4. Все данные Великобритании ежемесячно скачиваются с сайта производителя, анализируются как дополнительная информация из альтернативного источника и используются без какой-либо корректировки; в бюллетене упоминаются как «данные Hadley/CRU».

Таким образом, базовым массивом для оценки температурных условий на суше земного шара служит массив Т3288 (ИГКЭ). Глобальный временной ряд HadCRUT5 (Hadley/CRU, суша+море) в данном выпуске используется, в основном, в оценках трендов, а для анализа поля аномалий (рис. 2.1, 2.2) используются поля SAT и SST порознь (соответственно, массивы Т3288/CRUTEM5 и HadSST4. В соответствии с рекомендацией WMO-No.1203, все основные оценки приводятся в аномалиях относительно базового периода 1991-2020 гг.

Термины «приземная температура» и «приповерхностная температура» используются в бюллетене как синонимы. Развернутый комментарий к материалам бюллетеня с описанием используемых источников, сети станций и элементов методики мониторинга размещен на сайте ИГКЭ (http://www.igce.ru/climatechange).

Сравнение глобальных временных рядов сезонных аномалий температуры приземного воздуха (над сушей) по данным Т3288 (ИГКЭ) и CRUTEM5 (Hadley/CRU). Цель предлагаемого сравнения — с одной стороны, убедиться в репрезентативности массива Т3288, а с другой — оценить меру неопределенности оценок, полученных с использованием единой системы наблюдений, но разных наборов станций и разных технологий сбора

³ Решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 20 декабря 2016 г. – http://method.meteorf.ru

⁴ Массивы CRUTEM5 (температура воздуха над сушей), HadSST4 (температура воды на поверхности океанов и морей) и HadCRUT5 (объединенные данные над континентами и океанами) созданы и поддерживаются совместно двумя коллективами Великобритании – Хэдли-центром (Met Office Hadley Centre) и Университетом Восточной Англии (CRU UEA). Данные ежемесячно обновляются и публикуются производителем на web-сайтах http://www.MetOffice.gov.uk и http://www.MetOffice.gov.uk и http://www.detOffice.gov.uk и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и http://www.cru.uea.ac.uk в форме глобального шели в http://www.cru.uea

данных, их обработки и анализа. Сравниваемые временные ряды приведены на рисунке 1, а количественные результаты их сравнения (статистические характеристики попарных разностей) — в таблице 1.1. Оценки получены по данным за 1976-2025 гг. (период современного глобального потепления) и 1926-2025 гг. (последнее столетие) для Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий.

В соответствии с этими оценками (табл. 1.1), среднее значение различий рядов за 1976-2025 гг. не превышает 0.014°C (0.042°C за период 1926-2025), их стандартное отклонение более, чем на порядок ниже стандартного отклонения самих рядов (0.018-0.068 против 0.304-0.505°C), а максимальное различие на этом отрезке времени составило 0.042°C для Северного полушария (в 2010 г.) и 0.122°C для Южного (в 1971 г.).

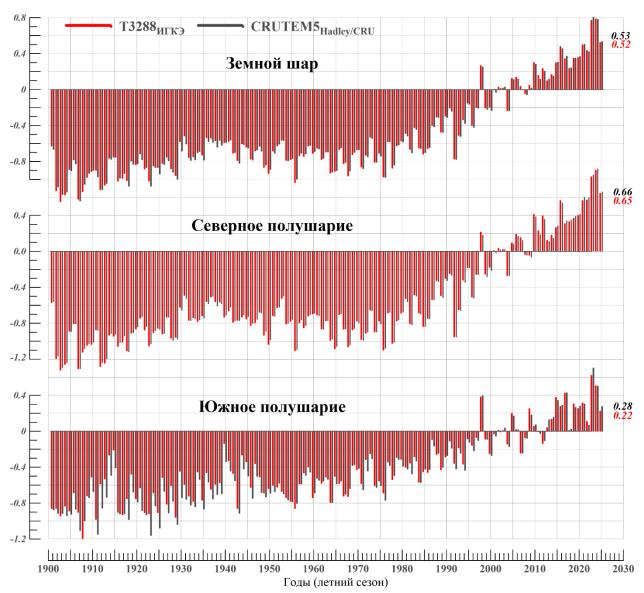


Рисунок 1 — Временные ряды пространственно-осредненных сезонных аномалий (лето) температуры приземного воздуха над сушей Земного шара, Северного и Южного полушарий. Использованы глобальные временные ряды (°С, 1901-2025 гг.), рассчитанные по данным массива Т3288 (ИГКЭ) и оригинальные ряды CRUTEM5 (Hadley/CRU). Справа приведены числовые значения сравниваемых рядов в последней точке (лето 2025 г.)

Следует, однако, отметить, что в первой половине столетия различия между этими источниками были более существенными (в Южном полушарии до 0,293°С). При этом во всех случаях ряды характеризуются высокой взаимной корреляцией (в Северном

полушарии -0,999, в Южном -0,985-0.991) и предельно низким различием коэффициентов тренда $(0,001-0,004^{\circ}\text{C}/10\text{ лет в Северном полушарии и }0,011-0,014^{\circ}\text{C}/10\text{ лет в Южном}).$

Таблица 1.1 – Оценки близости/различия глобальных временных рядов Т3288 (ИГКЭ) и CRUTEM5 (Hadley/CRU) в среднем для территории суши Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий

Померодому (подумуй сером)		1976-2025			1926-2025			
Показатель (летний сезон)	ЗШ	СП	ЮП	ЗШ	СП	ЮП		
Корреляция рядов	0,999	0,999	0,991	0,998	0,999	0,985		
Среднее различие, °С	0,009	0,007	0,014	0,010	0,003	0,042		
СКО (сигма) различий, °С	0,019	0,021	0,043	0,027	0,022	0,068		
Среднее абсолютное различие, °С	0,017	0,019	0,036	0,022	0,019	0,060		
Макс. абсолютное различие, °С	0,042	0,042	0,122	0,104	0,049	0,293		
Разность коэфф. тренда, °C/10лет	-0,001	-0,004	-0,011	-0,002	0,001	-0,014		
СКО Т3288	0,432	0,503	0,297	0,444	0,496	0,353		
CKO CRUTEM5	0,434	0,507	0,311	0,444	0,493	0,376		

Таблица 1.2 — Ход аномалий температуры приземного воздуха, осредненных за летний сезон и по территории суши Земного шара и полушарий (по данным массивов Т3288 и CRUTEM5, 2016-2025 гг.)

Год (летний	,	T3288, °C CRUTEM5, °C				
сезон)	ЗШ	СП	ЮП	ЗШ	СП	ЮП
2016	0,478	0,564	0,275	0,462	0,547	0,293
2017	0,343	0,308	0,424	0,382	0,345	0,457
2018	0,234	0,329	0,009	0,249	0,352	0,042
2019	0,349	0,368	0,305	0,362	0,399	0,288
2020	0,356	0,400	0,253	0,355	0,384	0,297
2021	0,497	0,564	0,315	0,480	0,568	0,305
2022	0,433	0,570	0,110	0,398	0,550	0,092
2023	0,770	0,829	0,621	0,793	0,838	0,704
2024	0,788	0,903	0,506	0,782	0,921	0,505
2025	0,524	0,645	0,224	0,533	0,662	0,275
VT ₂₀₂₅ -Max	-0,264	-0,258	-0,397	-0,260	-0,259	-0,429

Примечания. 1. Жирным шрифтом выделены рекорды 2016-2025 гг.

Можно видеть, что в последние 10 лет наблюдались весьма значительные колебания глобальной температуры, направленность которых, по данным обоих источников (Т3288/CRUTEM5) практически одинакова. Так, после рекордов 2016-2017 гг. (0,56/0,55°C в Северном полушарии и 0,42-0,46°C в Южном), температура сначала снизилась (до аномалии +0,31/0,34°C), но к 2023-2024 гг. вновь повысилась до рекордных 0,90/0,93°C в Северном полушарии и 0,62-0,70°C - в Южном. В 2025 г. температура, в сравнении с 2024 г., вновь понизилась в обоих полушариях и глобально (подробные данные см. в табл. 1.2).

^{2.} Аномалии рассчитаны относительно 1991-2020 гг.

^{3.} В последней строке приведена разность между температурой летнего сезона 2025 года и последним рекордом.

2. ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ЛЕТОМ 2025 г. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ

Летний сезон 2025 г. в целом по Земному шару и по обоим полушариям, по всем четырем наборам данных, стал третьим самым теплым летним сезоном в истории наблюдений (табл. 2.1). Исключение: суша Южного полушария (массивы **T3288/CRUTEM5**), где летний сезон был лишь 11-ым /9-ым в соответствующих рядах.

Данные пяти самых теплых летних сезонов, в целом по Земному шару и полушариям, приведены в таблице 2.1 для всех категорий данных (суша, море, суша+море). В случаях, когда лето 2025 г. не попало в пятерку самых теплых, для него введена дополнительная (шестая) строка.

Таблица 2.1 — Самые теплые летние сезоны для Земного шара, Северного и Южного полушарий: сезонная аномалия температуры VT и год наблюдения

Daves	3	Ш	(СП	Ю	ЭΠ
Ранг	VT, °C	Год (лето)	VT, °C	Год (лето)	VT, °C	Год (лето)
		HadCRU	T5 (Hadley/C	CRU, суша+м	ope)	
1	0,608	2023	0,753	2024	0,505	2023
2	0,558	2024	0,711	2023	0,363	2024
3	0,407	2025	0,526	2025	0,289	2025
4	0,308	2016	0,446	2022	0,215	2015
5	0,285	2022	0,433	2020	0,194	1998
		T	3288 (ИГКЭ	, суша)		
1	0,802	2023	0,919	2024	0,703	2023
2	0,780	2024	0,852	2023	0,501	2024
3	0,533	2025	0,662	2025	0,427	2017
4	0,502	2021	0,603	2021	0,395	1998
5	0,455	2016	0,599	2022	0,343	2015
11					0,224	2025
		CRUTE	EM5 (Hadley	/CRU, суша)		
1	0,788	2024	0,903	2024	0,621	2023
2	0,770	2023	0,829	2023	0,506	2024
3	0,524	2025	0,645	2025	0,424	2017
4	0,497	2021	0,570	2022	0,382	1998
5	0,478	2016	0,564	2021	0,377	2015
9					0,275	2025
		HadSS	ST4 (Hadley/	CRU, море)		
1	0,554	2023	0,650	2024	0,463	2023
2	0,494	2024	0,633	2023	0,341	2024
3	0,412	2025	0,500	2025	0,326	2025
4	0,274	2016	0,476	2020	0,184	2016
5	0,265	2020	0,433	2019	0,176	2015

Особенности географического распределения сезонных аномалий. На рисунках 2.1–2.2 представлены пространственные распределения аномалий температуры для сезона в целом и для каждого из летних месяцев, а в таблицах 2.2-2.4 — оценки аномалий для крупных регионов Земного шара. В частности, в таблице 2.2 приведены регионально

осредненные значения аномалий (в абсолютной и вероятностной шкалах), в таблице 2.3 – региональные частотные распределения точечных значений по знаку сезонных аномалий и их интенсивности, в таблице 2.4 – то же для 5%-х экстремумов холода/тепла в отдельные месяцы.

Таблица 2.2 – Значения аномалий приземной температуры в крупных регионах Земного шара летом 2025 г., в среднем за сезон и в каждом из месяцев: $vT^{\circ}C$ – отклонение от нормы 1991-2020; F% - вероятности непревышения, 1911-2025

	D.	Ле	то	Ию	НЬ	Ию	ЛЬ	Авг	уст
	Регион	νT	F%	νT	F%	νT	F%	νT	F%
		Hade	CRUT5 (суша+ма	рре)	•		•	
Земной	шар	0,41	98,2	0,38	98,2	0,45	98,2	0,40	98,2
Северно	Северное полушарие		98,2	0,47	98,2	0,60	98,2	0,51	98,2
Южное	полушарие	0,29	98,2	0,28	98,2	0,30	98,2	0,29	98,2
Атланті	ика (15-70N)	0,45	98,2	0,51	98,2	0,49	98,2	0,36	93,9
Тихий с	жеан (20-65N)	1,06	100	0,86	100	1,10	100	1,24	100
	90-65N	0,61	96,5	0,17	86,8	0,60	95,6	0,96	98.2
Широтные пояса	65-25N	0,88	99,1	0,86	99,1	0,98	99,1	0,82	97.4
	25S-25N	0,19	92,1	0,18	92,1	0,18	92,1	0,20	92.1
Пи <u>г</u> по	25-65S	0,34	99,1	0,29	98,2	0,38	99,1	0,34	98.2
ı	65-90S	1,12	87,7	1,33	85,2	0,26	69,1	1,73	92.6
		1	T3.	288 (суш	a)				
Земной	шар	0,52	98,2	0,53	98,2	0,56	97,4	0,50	97,4
Северно	ое полушарие	0,65	98,2	0,67	98,2	0,67	98,2	0,59	97,4
Южное	полушарие	0,22	91,2	0,16	89,5	0,28	94,7	0,27	93,0
Северна	ая Америка	0,50	93,9	0,68	95,6	0,31	86,8	0,52	92,1
Евразия	I	0,76	98,2	0,76	96,5	0,80	97,4	0,69	96,5
Южная	Америка	0,00	74,6	-0,42	47,4	0,22	79,8	0,30	84,2
Африка	L	0,41	93,9	0,50	95,6	0,45	93,9	0,26	88,6
Австрал	R ИI	-0,63	38,6	-0,61	40,4	-0,70	42,1	-0,48	50,9
Антаркт	гида	1,41	95,1	2,29	100	-0,10	59,3	2,07	95,1
Европа		0,75	93,9	0,77	94,7	0,92	95,6	0,59	89,5
Азия		0,77	98,2	0,80	98,2	0,74	98,2	0,72	98,2
			CRU'	<i>ГЕМ5 (с</i> у	vua)				
Земной	шар	0,53	98,2	0,47	97,4	0,63	98,2	0,51	97,4
Северно	ое полушарие	0,66	98,2	0,64	98,2	0,75	98,2	0,61	96,5
Южное	полушарие	0,28	93	0,12	89,5	0,38	96,5	0,32	93,0
			HadSST	4 (тольк	о море)				
Земной	шар	98,2	0,40	98,2	0,44	98,2	0,40	98,2	
Северно	ое полушарие	0,50	98,2	0,45	98,2	0,56	98,2	0,49	97,4
Южное	полушарие	0,33	98,2	0,35	99,1	0,32	98,2	0,30	98,2

Условные обозначения.

- 1. vT, °С наблюденная аномалия в 2025 году (базовый период 1991-2020 гг.);
- 2. F% –значение эмпирической функции распределения F=prob (X
 \leq vT_{2025}) по данным за 1911-2025 гг. (вероятность непревышения)
- 3. Красным шрифтом выделены абсолютные максимумы (наибольшие из всех значений ряда, за 1911-2025 гг.), синим отрицательные аномалии.

В целом, на территории Земного шара (рис. 2.1, табл. 2.3), преобладали положительные сезонные аномалии (температура выше климатической нормы 1991-2020 гг.), которые этим летом составили 74,6% данных глобальной сети 5-градусных боксов (HadCRUT5, суша+море) и 75,2% данных наземных станций (Т3288, только суша). 5%-е экстремумы тепла (значения выше уровня 95-го процентиля) отмечены на 25,2% боксов и на 25,6% наземных станций. Как следует из таблицы 2.3, точечные положительные аномалии составляют не менее 42% данных для всех континентов (кроме Австралии: 27,9%) и всех рассматриваемых широтных зон, причем в широтном поясе 65-25N (за счет океанов – Тихого, 20-65N и Атлантического, 15-70N) и в Евразии (в основном за счет Азии) более 10% станций зафиксировали новые абсолютные максимумы.

Таблица 2.3 — Частотное распределение локальных сезонных аномалий летом 2025 года в крупных регионах Земного шара, в зависимости от знака аномалий и их интенсивности

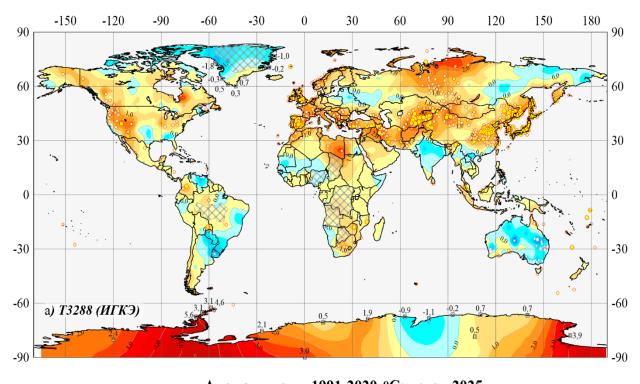
		NINI	Чис	ло значе	ний в ка	аждой ка	тегории	(в % от	NN)
	Регион	NN - число боксов/ станций	сло ссов/ (отн. 1991-2020 гг.)		экстр	⁄о-е емумы а/тепла	Абсолютные экстремумы		
		Стапции	V < 0	V=0	V > 0	$X \leq P_{05}$	$X \ge P_{95}$	$X = \min$	$X = \max$
			HadCRI	U Т5 (су п	іа+море)			
Земно	ой шар	1600	19,6	5,9	74,6	0,1	25,2	0,1	5,7
Север	ное полушарие	910	18,7	5,4	75,9	0,1	30,5	0	8,8
Южно	ое полушарие	690	20,7	6,5	72,8	0,1	18,1	-	1,6
Атлан	тика, 15-70N	135	14,1	4,4	81,5	-	32,6	-	11,1
Тихий	и́ океан, 20-65N	147	9,5	1,4	89,1	-	47,6	-	20,4
e	90-65N	103	25,2	5,8	68,9	1,0	23,3	1,0	6
Широтные пояса	65-25N	492	10,8	2,8	86,4	-	41,7	-	13.8
	25S-25N	630	25,1	7,9	67,0	0,2	17,8	-	1.6
	25-65S	361	20,2	6,6	73,1	-	16,6	-	1.9
	65-90S	14	21,4	-	78,6	-	14	-	-
			T3288 ((только	суша)				
Земно	ой шар	2502	20,1	4,6	75,2	1,6	25,6	0,5	8,1
Север	ное полушарие	2108	16,1	3,7	80,2	0,7	27,9	0,3	9,1
Южно	ое полушарие	394	41,9	9,4	48,7	6,1	13,5	1,5	2,5
Север	ная Америка	410	20,0	5,6	74,4	1,2	10,0	0,2	0,5
Евраз	ИЯ	1480	13,6	3,0	83,3	0,5	32,8	0,3	10,7
Южна	ая Америка	140	47,9	10,0	42,1	3,6	5,7	0,7	1,4
Афри	ка	131	27,5	6,1	66,4	-	19,1	-	3,8
Австр	алия	147	59,9	12,2	27,9	15,0	6,1	4,1	-
Антар	ктида	18	16,7	-	83,3	-	44,4	-	5,6
Европ	ıa	547	12,8	3,7	83,5	-	25,2	-	5,9
Азия		942	14,1	2,7	83,2	0,7	36,9	0,4	13,5
Аркти	ıка, 65-90N, суша	148	17,6	3,4	79,1	-	15,5	-	1,4

Условные обозначения:

^{1.} V < 0, V = 0, V > 0 – категории сезонных аномалий;

^{2.} P_{05} , P_{95} — 5-я и 95-я процентили

^{3.} min, max – наименьшее и наибольшее значения, 1911-2025


Следует особо отметить Тихий океан (20-65N), где в этом сезоне установлены новые рекорды пространственно-осредненных аномалий, в среднем за сезон и в каждом из летних месяцев. Рекордно теплым был также июнь в Антарктиде.

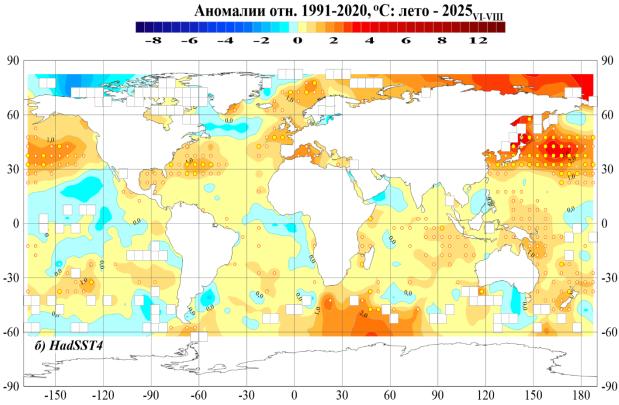

Наряду с положительными аномалиями, в течение сезона наблюдались области отрицательных аномалий, среди которых доля экстремально холодных аномалий - ниже 5-го процентиля - очень мала (кроме Австралии, особенно в июне). Так, по сезонным данным (табл. 2.3), отрицательные аномалии отмечены на 19,6/20,1% всех данных Земного шара (боксов/станций), в их числе 5%-е экстремумы холода составляют всего 0,1/1,6% (но при этом 15% станций Австралии и более 6% боксов Южного полушария, по-видимому, также за счет Австралии – где средняя сезонная аномалия составила -0,63°С). Кроме Австралии, отрицательные аномалии наблюдались: в Гренландии, в море Лабрадор, в Индии, на востоке Южной Америки, на Дальнем востоке России, в экваториальных широтах в восточной части Тихого океана.

Таблица 2.4 – Доля локальных 5%-экстремумов холода ($X \le P_{05}$) и тепла ($X \ge P_{95}$) в крупных регионах Земного шара в летние месяцы 2025 г. (в процентах от NN, %)

	Da	Всего	Ин)нь	Ин	ОЛЬ	AB	густ
	Регион	станций NN	X <p<sub>05</p<sub>	X>=P95	X <p<sub>05</p<sub>	X>=P95	X <p<sub>05</p<sub>	X>=P95
		Had	CRUT5 (суша+мој	pe)			
Земной шар 1600 0,3 18,1 0,3 20,9 0,3							22,9	
Северн	юе полушарие	910	0,2	21,0	0,4	26,4	0,2	28,8
Южно	е полушарие	690	0,3	14,3	0,1	13,6	0,3	15,2
Атлант	гика, 15-70N	135	_	28,9	-	25,9	1	28,9
Тихий	океан, 20-65N	147	_	45,6	-	47,6	-	39,5
4)	90-65N	103	_	7,8	-	15,5	-	32.0
Широтные пояса	65-25N	492	_	30,5	0,4	36,6	0,4	33.7
иротн пояса	25S-25N	630	0,5	15,2	0,3	14,6	_	18.7
Шиј п	25-65S	361	0	9,7	0,3	12,2	0,6	13.0
I	65-90S	14	-	7,1	-	14	_	21
		T3	288 (толі	ько суша))			
Земной	і́ шар	2502	1,4	23,1	1,2	22,8	1,2	15,6
Северн	ое полушарие	2108	0,5	25,5	0,7	24,8	1,2	16,7
Южно	е полушарие	394	6,1	10,2	3,8	12,4	1,3	9,6
Северн	ая Америка	410	0,5	11,5	1,0	9,3	4,6	12,7
Еврази	R	1480	0,4	28,4	0,5	28,8	0,4	17,8
Южная	н Америка	140	2,9	1,4	2,1	5,7	-	10,7
Африк	a	131	-	25,2	-	10,7	-	10,7
Австралия		147	15,0	6,8	10,2	5,4	3,4	2,7
Антарктида		18	-	27,8	-	38,9	-	22,2
Европа		547	-	26,9	-	23,4	-	12,1
Азия		942	0,6	29,2	0,7	32,1	0,6	21,1
Арктиі	ка, 65-90N (суша)	148	0,7	2,7	-	14,2	-	29,7

Примечание. Процентное содержание экстремумов рассчитано по всем доступным станционным и сеточным данным соответствующего месяца/сезона/региона (см. NN). Значения 5-го и 95-го процентилей (P_{05} , P_{95}) рассчитаны для каждого календарного месяца и каждой станции по данным за 1911-2025 гг., а их частота представлена в таблице в процентах от NN.

Рисунок 2.1 — Пространственное распределение сезонных аномалий температуры (°C) у поверхности Земного шара летом 2025 г.: а) по станционным данным Т3288 (ИГКЭ); б) по сеточным данным HadCRUT5 (Hadley/CRU).

Аномалии приведены в отклонениях от средних за 1991-2020 гг. Кружками белого (минимумы) и желтого (максимумы) цвета указано положение боксов/станций с рекордно высокими значениями аномалий. Значками меньшего размера указано положение 5%-х экстремумов того же знака. Числовые значения аномалий на территории Антарктиды и Гренландии показаны непосредственно в точках расположения станций. Штриховкой (а) и пустыми боксами (б) показаны области отсутствия наблюдений.

Напомним, что аномалии в данном выпуске рассчитаны относительно 1991-2020 гг., самого теплого периода в истории наблюдений. Поэтому термин «отрицательные аномалии» означает лишь: «температура ниже средней за 1991-2020», но не «значение из холодной половины ряда» (ниже моды распределения). В то же время порядковые статистики не зависят от базового периода, так что количество станций/боксов с 5%-ми экстремумами тепла/холода или с абсолютными максимумами/минимумами (табл. 2.3-2.4), как и оценки в вероятностной шкале (табл. 2.2), следует считать более информативными показателями.

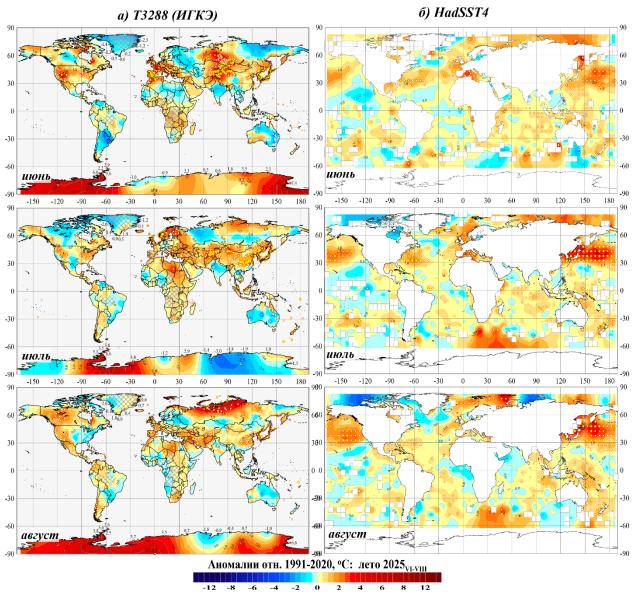


Рисунок 2.2 -См. рис. 2.1, но для средних месячных аномалий (июнь-июль-август)

Все три летних месяца 2025 г., в целом по Земному шару, оказались третьими в соответствующих временных рядах (аномалии: $+0.38^{\circ}$ C, $+0.45^{\circ}$ C, $+0.40^{\circ}$ C).

Общее количество локальных 5%-х экстремумов тепла по земному шару, от месяца к месяцу (июнь-июль-август), менялось незначительно: 18,1%, 20,9%, 22,9% (табл. 2.4). В течение всего сезона они были особенно многочисленны в северной части Тихого океана (45,6-47,6-39,5%) и в Евразии (28,4-28,8-17,8%). По количеству локальных 5%-х экстремумов холода в этом сезоне выделяется Австралия (15,0-10,2-3,4%).

В *июне* 2025 г., наиболее теплые условия с многочисленными локальными 5%-ми экстремумами тепла сложились, в основном, в США, на островных территориях Канады, в Западной Европе, в центральных районах Азии. В Антарктиде средняя по континенту температура летнего сезона в этом году стала рекордно высокой (аномалия +2,29°С). На акваториях океанов, как уже отмечалось выше, наиболее теплыми условиями выделяется северная часть Тихого океана. Небольшие области отрицательных аномалий наблюдались на всех континентах и во всех океанах, при этом 5%-е экстремумы холода (температура ниже 5-го процентиля) наблюдались на востоке Австралии и на юге Южной Америки.

В июле очень тепло (5%-е экстремумы тепла) в Европе, в Африке (кроме западного региона), в центре и на севере Азии, в Американском квадранте Антарктиды и в северной части Тихого океана. Как и в июне, области отрицательных аномалий наблюдались на всех континентах и во всех океанах, самые крупные из них: Австралия (с 5%-ми экстремумами холода), Канада, Австралийский квадрант Антарктиды.

В августве 5%-е экстремумы тепла наблюдались, в основном, на западе Северной Америки, на севере и юге Евразии, в Антарктиде, в северной части Тихого океана. Отрицательные аномалии с 5%-ми экстремумами холода наблюдались: на востоке Северной Америки и на прилегающих акваториях Атлантического океана; на остальных континентах и океанах площадь и интенсивность отрицательных аномалий была меньше.

3. КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА, 1850-2025 гг. (летний сезон)

Межгодовые и межмесячные изменения глобальной температуры. Двумерные изоплеты «год-месяц» (рис. 3.1) иллюстрируют изменение глобальной температуры от года к году (по вертикали) и от месяца к месяцу (по горизонтали) на протяжении 1850-2025 гг.

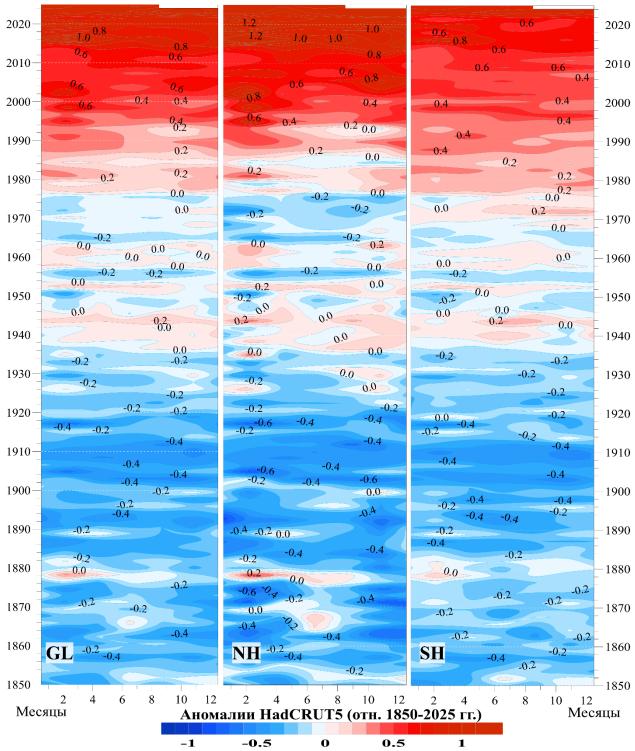
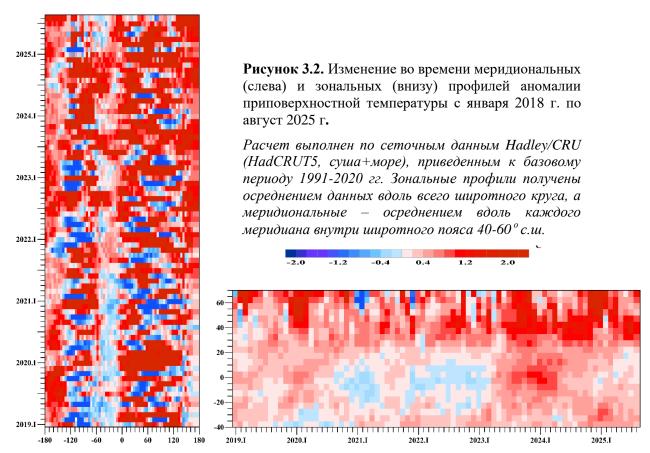
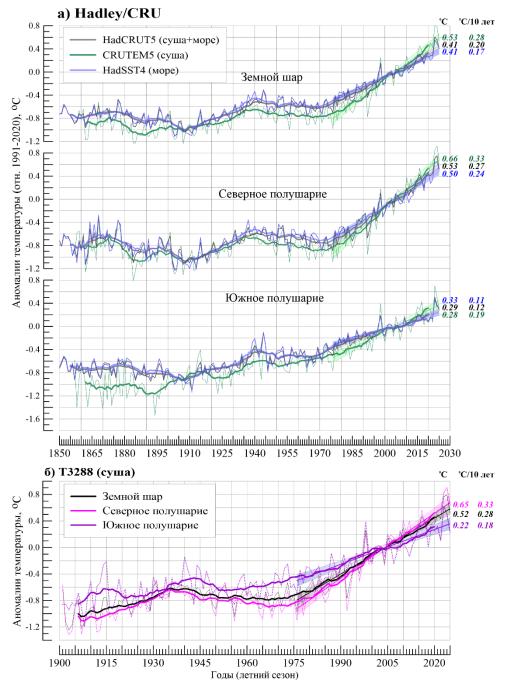



Рисунок 3.1 – Изменение аномалий средней месячной приповерхностной температуры, осредненной по всей территории (суша+море) Земного шара (GL), Северного (NH) и Южного (SH) полушарий в течение периода с января 1850 по август 2025 гг.

Использованы данные HadCRUT5 (Hadley/CRU, UK). Аномалии выражены как отклонения от средней соответствующего ряда за весь период наблюдений (1850-2025 гг.).

На диаграмме хорошо прослеживается ход глобальных изменений температурного режима у поверхности Земного шара за период инструментальных наблюдений (с 1850 г.): похолодание в конце 19-го - начале 20-го столетий, арктическое потепление 1940-х, современное глобальное потепление, начавшееся в середине 1970-х и заметно усилившееся в 21-м столетии. Наиболее ярко оно проявляется в Северном полушарии после 2015 г. В последние годы значения аномалии температуры относительно средней всего периода наблюдений колеблются на уровне 0,90-1,0°С в Северном полушарии и 0,5-0,7°С в Южном.

Широмно-долгомные разрезы (2019-2025). Меридиональный профиль (рис. 3.2, левый фрагмент) позволяет проследить изменение температурного режима у поверхности океанов и континентов в умеренных широтах Северного полушария (40-60°с.ш.), от 180° з.д. до 180°в.д., то есть от восточного до западного сектора Тихого океана, через территорию США, Северную Атлантику и Евразию в течение 2019-2025 гг.



В текущем сезоне (лето), во все три месяца, в умеренных широтах Северного полушария (рис. 3.2, левый фрагмент), крупные положительные аномалии просматриваются в Тихом океане и в восточной части северной Атлантике.

На континентах в течение всех семи последних лет наблюдалось чередование положительных и отрицательных аномалий температуры.

Зональные профили (рис. 3.2, справа) четко указывают на заметное понижение температуры в экваториальных широтах (с середины 2020 г. до марта 2023) — это трехлетний эпизод Ла-Нинья (за последние 50 лет таких было всего три), сменившийся недолгим потеплением (до начала 2024-го). С начала 2024 года потепление экваториальных широт ослабевает (особенно в Северном полушарии), но потепление северных умеренных широт продолжается.

Временные ряды глобально осредненной температуры (рис. 3.3). Интегральную оценку направленности и интенсивности наблюдаемых крупномасштабных изменений приземной температуры дают глобально осредненные временные ряды для территории Земного шара и полушарий (рис. 3.3) и рассчитанные по ним оценки трендов (табл. 3.1-3.2).

Рисунок 3.3 – Временные ряды сезонных аномалий приземной температуры (лето), осредненных по территории Земного шара, Северного и Южного полушарий: а) по данным Hadley/CRU, 1850-2025: HadCRUT5, CRUTEM5, HadSST4; б) по данным ИГКЭ, 1901-2025: T3288.

Для всех рядов показан ход 11-летних скользящих средних и линейный тренд за 1976-2025 гг. с 95% доверительным интервалом. Справа приведены числовые значения сезонных аномалий в 2025 г. (°C) и значения коэффициентов линейного тренда за 1976-2025 гг. (°C/10лет, лето).

Коэффициенты линейного тренда (°C/10 лет) приведены в таблице 3.1 для всех 12 глобальных рядов (для трех территорий по каждому из четырех наборов данных) за два

периода: 1976-2025 гг. (период современного глобального потепления) и 1926-2025 гг. (последнее 100-летие). Отметим дополнительно, что оценки тренда за 1976-2025 гг. для суши (по данным Т3288), в сравнении с аналогичными оценками за 1976-2024 гг. 5 , изменились незначительно (в Северном полушарии до $\pm 0,002$ °C/10 лет, в Южном полушарии до $\pm 0,006$ °C/10 лет).

В таблице 3.2 приведены показатели $k_1 - k_3$, сравнивающие оценки коэффициентов тренда в разных подгруппах данных (см. расшифровку в столбце «показатель»). Эти показатели количественно уточняют выводы, основанные на визуальном сопоставлении глобальных временных рядов (рис. 3.3) и соответствующих им оценок трендов (табл. 3.1).

Таблица 3.1 - Коэффициенты линейного тренда (°С/10 лет) глобальных временных рядов приземной температуры за 1976-2025 гг. и 1926-2025 гг. (в среднем за летний сезон и для каждого месяца)

Регион	19	976-2025	, °C/10 л	ет	19	926-2025	, °C/10 л	ет	
Тегион	Лето	июнь	июль	август	Лето	июнь	июль	август	
		Had	CRUT5	(суша+м	ope)				
Земной шар	0,198	0,190	0,197	0,206	0,104	0,105	0,104	0,103	
Северное полушарие	0,271	0,259	0,270	0,284	0,117	0,121	0,117	0,113	
Южное полушарие	0,124	0,122	0,123	0,128	0,091	0,089	0,092	0,093	
Т3288-ИГКЭ (суша)									
Земной шар	0,281	0,284	0,276	0,282	0,126	0,140	0,119	0,118	
Северное полушарие	0,327	0,331	0,322	0,327	0,136	0,155	0,128	0,124	
Южное полушарие	0,175	0,175	0,167	0,180	0,099	0,099	0,096	0,102	
		(CRUTEN	15 (суша)				
Земной шар	0,283	0,281	0,280	0,287	0,128	0,137	0,124	0,122	
Северное полушарие	0,331	0,332	0,327	0,334	0,135	0,151	0,129	0,124	
Южное полушарие	0,187	0,181	0,186	0,193	0,113	0,109	0,112	0,119	
			HadSST	'4 (море)					
Земной шар	0,174	0,160	0,176	0,186	0,097	0,093	0,099	0,098	
Северное полушарие	0,239	0,215	0,244	0,258	0,108	0,103	0,112	0,110	
Южное полушарие	0,112	0,109	0,110	0,115	0,088	0,088	0,089	0,088	

Отметим, что показатели k_1 - k_3 сравнивают интенсивность (среднюю скорость) потепления в «факторных» подгруппах: k_1 = $b_{SAT/SST}$ — на суше и на акваториях океанов, k_2 = $b_{NH/SH}$ — в Северном и Южном полушариях, k_3 = $b_{1976-2025/1926-2025}$ — современное потепление и потепление последнего 100-летия.

Из данных таблицы 3.2, где значения всех показателей больше 1, можно сделать следующий вывод: глобальное потепление (1976-2025) над сушей протекает быстрее, чем

16

 $^{^5}$ Оценки трендов за 1976-2024 гг. доступны на сайте ИГКЭ в сезонном обзоре «Бюллетень мониторинга изменений климата Земного шара. Приземная температура. Лето 2024» <u>http://www.igce.ru/climatechange.</u>

над океанами (k1=1,3-1,7), в Северном полушарии активнее, чем в Южном (k2=1,19-2,13) и в последние 50 лет ускорилось в сравнении с минувшим столетием в целом. При этом коэффициент ускорения в Северном полушарии больше, чем в Южном (2,2-2,5 против 1,3-1,8) и в обоих полушариях выше на суше.

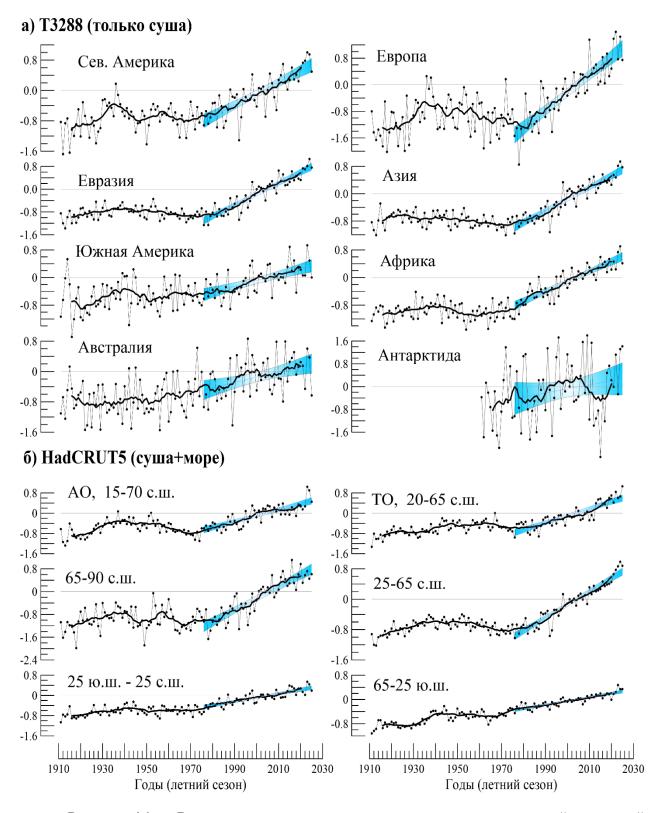
Таблица 3.2 – Сравнение средней скорости глобального потепления (у поверхности) в разных «факторных» подгруппах, в среднем за летний сезон 2025 года

	Показатель		1976-2025			1926-2025	
k ₁	Показатель	ЗШ	СП	ЮП	ЗШ	СП	ЮП
	$b_{T3288}/b_{HadSST4}$	1,61	1,37	1,56	1,30	1,26	1,13
	b _{CRUTEM5} /b _{HadSST4}	1,63	1,38	1,67	1,32	1,25	1,28
	<i>b</i> _{СП} / <i>b</i> _{ЮП}		1976-2025			1926-2025	
\mathbf{k}_2		T3288	CRUTEM	HadSST	T3288	CRUTEM	HadSST
		1,87	1,77	2,13	1,37	1,19	1,23
			СП			ЮП	
k ₃	$b_{1976-2025}/b_{1926-2025}$	T3288	CRUTEM	HadSST	T3288	CRUTEM	HadSST
		2,40	2,45	2,21	1,77	1,65	1,27

4. ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2025 гг. (летний сезон)

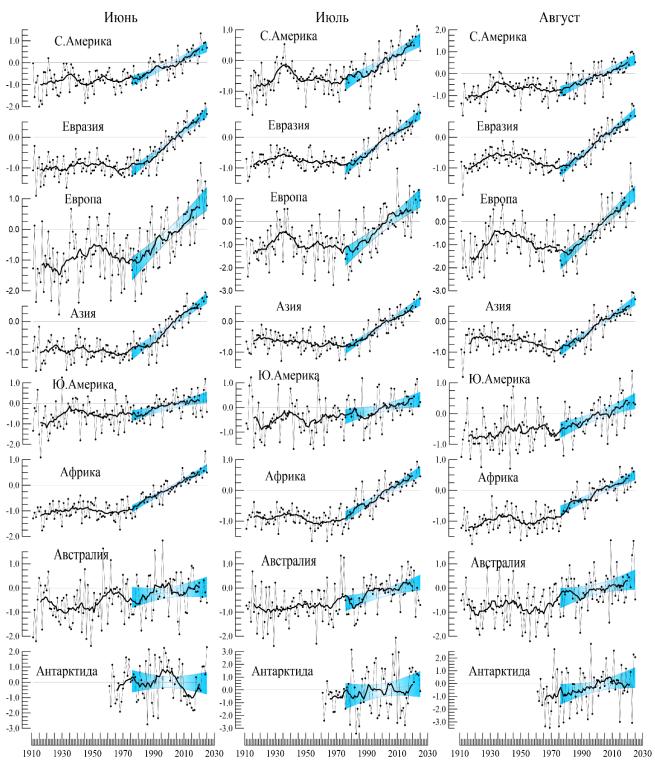
Представленные ниже временные ряды (рис. 4.1, 4.2, 4.3) рассчитаны по методике ИГКЭ, по сеточным данным HadCRUT5 (для пяти широтных поясов и северных частей Тихого и Атлантического океанов) и по данным станционных наблюдений Т3288 (для шести континентов и для Европы и Азии отдельно). Данные до 1911 г. не приводятся, т.к. представляются недостаточно полными и надежными (особенно над океанами). На всех временных рядах показаны тренды за период 1976-2025 гг., условно принятый за период современного глобального потепления. Числовые оценки трендов для всех регионов приведены в табл. 4.1

Таблица 4.1 – Коэффициенты линейного тренда (${}^{o}C/10$ лет) регионально осредненных аномалий приземной температуры за 1976-2025 гг.


(в среднем за сезон и по месяцам)

	(1	Ле		И по мс		Ин	ЛЬ	Авг	уст
	Регион	b	α%	b	α%	b	α%	b	α%
		HadCl	RUT5 (суша+м	ope)				
Атланті	ика (15-70N)	0,232	0,0	0,212	0,0	0,224	0,0	0,260	0,0
Тихий с	океан (20-65N)	0,278	0,0	0,241	0,0	0,293	0,0	0,301	0,0
ပ	90-65N	0,412	0,0	0,444	0,0	0,360	0,0	0,424	0,0
тны	65-25N	0,346	0,0	0,322	0,0	0,349	0,0	0,366	0,0
Широтные пояса	25S-25N	0,155	0,0	0,153	0,0	0,153	0,0	0,160	0,0
	25-65S	0,125	0,0	0,126	0,0	0,121	0,0	0,121	0,0
	65-90S	0,198	5,1	0,067	67,1	0,169	29,3	0,360	2,5
		T328	88 (тол	ько суш	a)				
Северна	ая Америка	0,299	0,0	0,314	0,0	0,288	0,0	0,295	0,0
Евразия	[0,386	0,0	0,395	0,0	0,366	0,0	0,395	0,0
Южная	Америка	0,169	0,0	0,185	0,0	0,142	1,2	0,193	0,0
Африка	Африка		0,0	0,325	0,0	0,298	0,0	0,234	0,0
Австрал	Австралия		0,3	0,088	26,5	0,178	0,3	0,156	4,2
Антаркт	гида	0,140	18,1	-0,025	96,2	0,192	29,6	0,265	6,9
Европа		0,532	0,0	0,464	0,0	0,518	0,0	0,610	0,0
Азия	<u> </u>	0,343	0,0	0,374	0,0	0,323	0,0	0,334	0,0

Примечание, Синим шрифтом выделены ячейки с отрицательным трендом (тенденция к похолоданию), Оценки с уровнем значимости $1<\alpha\le 5\%$ выделены заливкой зеленого цвета (статистически значимы на 5% уровне), оценки с уровнем значимости $\alpha > 5\%$ выделены заливкой серого цвета (на 5%-м уровне статистически не значимы), Остальные оценки статистически значимы на 1%-м уровне ($\alpha\le 1\%$)


Оценки тренда (табл, 4,1) уверенно указывают на тенденцию к потеплению летних сезонов во всех рассмотренных крупных регионах (основных широтных поясах, северных океанах и всех континентах), кроме Антарктиды и Южной полярной области: здесь оценки линейного тренда в июне и июле, а также в Антарктиде за сезон в целом статистически не значимы даже на 10% уровне, В июне к ним присоединяется Австралия, Регионы наиболее интенсивного потепления летних сезонов — Европа (+0,53, в августе +0,61 °C/10 лет) и Арктический широтный пояс (+0,41°, в июне +0,44°C/10 лет), Наименее выражено потепление на континентах Южного полушария: в Антарктиде, Австралии и Южной Америке, а также в широтных зонах 25-65S и 25S-25N,

Более детально проследить особенности многолетнего хода приземной температуры в каждом регионе можно по временным рядам (рис, 4,1-4,3) и оценкам тренда (табл, 4,1),

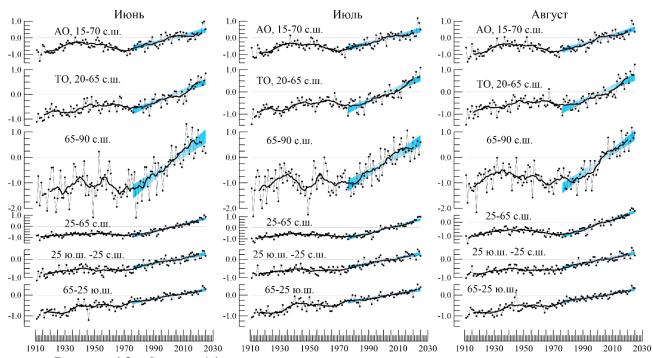


Рисунок 4,1 — Временные ряды пространственно осредненных аномалий приземной температуры летнего сезона для континентов (а), северных частей Атлантического и Тихого океанов и основных широтных поясов земного шара (б)

Расчеты выполнены по методике ИГКЭ по данным Т3288 (для континентов) и HadCRUT5 (для океанов и широтных поясов), Аномалии приведены в отклонениях от средних за 1991—2020 гг, Сглаженные кривые (жирная линия) получены 11-летним скользящим осреднением, Показан линейный тренд за 1976-2025 гг, с 95%-м доверительным интервалом (голубая заливка),

Рисунок 4,2 – См, рис, 4,1, но для аномалий летних месяцев и только для континентов *Расчеты выполнены по методике и данным ИГКЭ с использованием массива Т3288*,

Рисунок 4,3 – См, рис, 4,1, но только для океанов и широтных поясов земного шара, *Расчеты выполнены по методике ИГКЭ с использованием массива сеточных данных HadCRUT5* (данные Hadley/CRU, суща+море),

5, ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2025 гг, (летний сезон)

В главе представлены географические распределения коэффициентов линейного тренда приповерхностной температуры за 1976-2025 гг, для летнего сезона (рис, 5,1) и для каждого летнего месяца (рис, 5,2), Использованы данные наблюдений на 2496 станциях (массив Т3288) и в центрах 1565 боксов (массив HadCRUT5), для которых своевременно поступили данные за 2025_{VI-VIII}, В таблице 5,1 приведено частотное распределение коэффициентов тренда в зависимости от географического региона, направленности тренда и уровня значимости, В ячейках таблицы для каждого региона указано реальное число учтенных данных NN (станций/боксов) и их доля в каждой анализируемой выборке (в процентах от NN),

Таблица 5,1 – Частотное распределение локальных оценок тренда в крупных регионах земного шара, в зависимости от знака коэффициента тренда и его статистической значимости (1976-2025, летний сезон)

				Выбор	оки по зн	аку коэфф	ьициента	а тренда		
Регион	ı	NN	b<0	b=0	b>0	b-	<0	b>0		
			D <u< th=""><th>D=U</th><th>D>0</th><th>α<=5%</th><th>α>=10%</th><th>α<=5%</th><th>α>=10%</th></u<>	D=U	D>0	α<=5%	α>=10%	α<=5%	α>=10%	
			HadCRUT5 (суша+море)							
Земной	шар	1565	4,2	0,7	95,1	0,5	3,4	77,6	13,4	
Северное полушарие		906	0,4	-	99,6	0,1	0,3	90,0	6,3	
Южное полушарие		659	9,4	1,7	88,9	1,1	7,6	60,5	23,2	
AO, 15-70N		135	-	-	100,0	-	-	94,1	5,2	
TO, 20-65N		147	-	_	100,0	_	-	99,3	0,7	
43	90-65N	99	1,0	-	99,0	1,0	-	90,9	6,1	
НЫ(65-25N	492	0,2	_	99,8	_	0,2	94,3	3,9	
Широтные пояса	25S-25N	630	3,5	0,8	95,7	_	3,3	77,3	13,7	
Пи	25-65S	330	11,5	1,8	86,7	1,5	9,1	51,8	28,2	
	65-90S	14	28,6	-	71,4	14,3	7,1	14,3	42,9	
			T32	288 (толі	ько суша)				
Земной	шар	2496	3,9	0,5	95,6	1,2	2,4	80,7	11,6	
Северно	е полушарие	2105	1,4	0,1	98,5	0,4	0,9	86,6	8,8	
Южное	полушарие	391	17,4	2,3	80,3	5,6	10,5	49,4	26,9	
С, Амер	ика	410	2,2	-	97,8	1,2	0,7	74,4	18,3	
Евразия		1479	1,1	0,1	98,7	0,1	0,9	90,0	5,9	
Ю, Аме	рика	139	16,5	2,9	80,6	4,3	12,2	32,4	43,2	
Африка		130	2,3	-	97,7	0,8	1,5	85,4	10,8	
Австралия		146	24,7	2,7	72,6	8,9	13,0	48,6	19,2	
Антаркт	Антарктида 18			-	77,8	11,1	5,6	33,3	38,9	
Европа	Европа 546 Азия 942		-	-	100,0	-	-	98,0	1,3	
Азия			1,8	0,2	98,0	0,2	1,5	85,5	8,6	
Арктика	а, 65-90N (суша)	148	-	-	100,0	-	-	94,6	3,4	

Примечание, Таблица обобщает распределение оценок на рисунке 5,1; NN — общее количество учтенных станций/боксов в регионе,

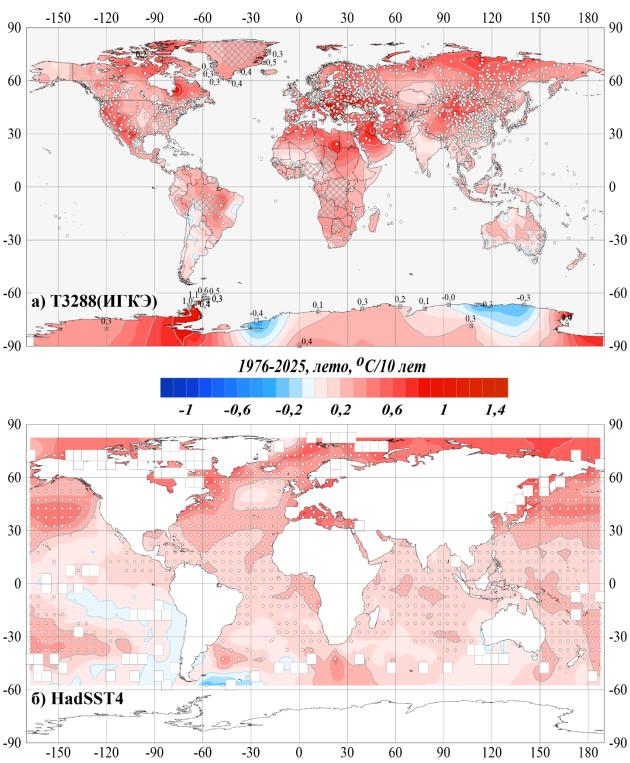


Рисунок 5,1 – Пространственное распределение коэффициентов линейного тренда сезонных аномалий температуры у поверхности Земного шара, 1976-2025 (лето), °C/10 лет Использованы данные: а) Т3288 — станционные данные ИГКЭ (суша), б) HadSST4 — сеточные данные Hadley/CRU, UK (море), Штриховкой (а) и пустыми боксами (б) показаны области отсутствия наблюдений, Для станций Антарктиды и Гренландии приведены числовые значения коэффициентов тренда, Белыми кружками показаны боксы/станции, для которых тренд статистически значим на 1%-м уровне,

Потепление летних сезонов наблюдается на большей части Земного шара – положительные сезонные тренды составляют 95,6% всех локальных оценок по станционным данным Т3288 и 95,1% по сеточным данным HadCRUT5; статистически значимых среди них (на 5%-м уровне) соответственно, 80,7% и 77,6%, при том, что статистически значимые отрицательные коэффициенты составляют всего 3,9 и 4,2% (в

целом по земному шару, в основном, это станции Антарктиды и Австралии), Аналогичные оценки для каждого из рассматриваемых регионов представлены в таблице 5,1,

На акваториях Мирового океана также преобладает положительный тренд, который в Северном полушарии статистически значим, преимущественно, на 1%-м уровне (рис, 5,1), Отрицательный тренд на акваториях отмечается в восточной части Тихого океана и на юге Атлантического океана,

В пространственном распределении месячных оценок, как и сезонных, доминирует тенденция к потеплению (рис, 5,2), Наиболее интенсивно потепление протекает в июне на севере Сибири, в Канадском архипелаге и в районах Передней Азии (до 1,3, 1,4, 0,8°С/10 лет, соответственно), а также в течение всего сезона в центральной и юго-восточной Европе (до +0,9°С/10 лет),

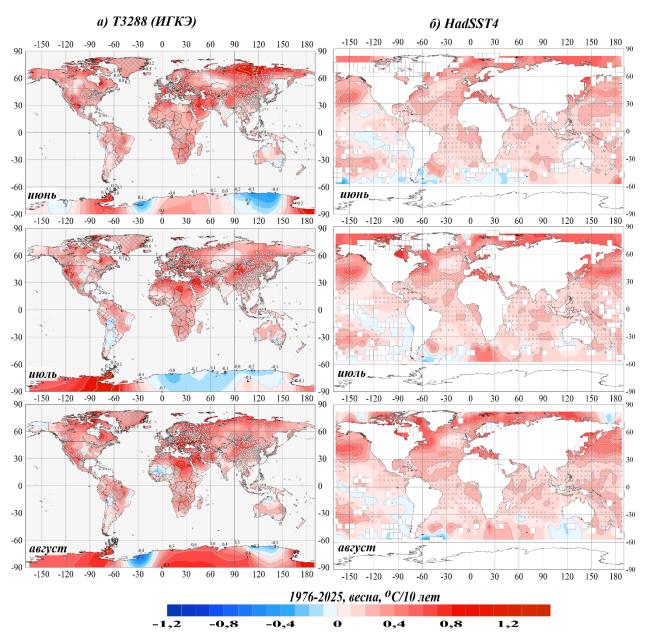


Рисунок 5,2 – См, рис, 5,1, но для коэффициентов тренда среднемесячных аномалий (июнь-август)

Следует отметить на всех континентах наличие больших областей статистически незначимого положительного тренда, в целом за сезон и в отдельные месяцы, наиболее обширные из которых расположены в Евразии (в основном, в Монголии, Сибири и на

Дальнем Востоке), в Северной Америке (большая часть Канады), в Африке, на западе и в центре Австралии, Все они статистически не значимы даже на 10%-уровне,

На акваториях Мирового океана в каждом из летних месяцев сохраняются особенности сезонного распределения,

Области отрицательного тренда (за сезон в целом и в отдельные месяцы) просматриваются в Антарктиде, в восточной части Тихого океана и на юге Атлантического океана; а также в Южной Америке (в основном в Боливии), в Австралии (тренды бОльшей частью незначимые),

Таблица 5,2 – Доля статистически значимых на 5%-м уровне оценок (α<=5%) линейных трендов в крупных регионах Земного шара в летние месяцы 1976-2025 гг, (в зависимости от региона и знака тренда)

		1	T		1		T:		
	Регион	NN	Ин	онь	Ин	0ЛЬ	Аві	уст	
	TCIHOII	1414	b<0	b>0	b<0	<i>b>0</i>	b<0	b>0	
		Had	CRUT5 (суша+мо	pe)				
Земной	шар	1565	0,4	65,3	0,2	66,5	0,4	71,8	
Северно	ое полушарие	906	0,1	78,0	0,1	80,0	-	87,5	
Южное	полушарие	659	0,8	47,8	0,3	47,8	0,9	50,2	
AO, 15-	70N	135	-	82,2	-	88,9	-	91,9	
TO, 20-	65N	147	-	89,1	_	98,0	-	98,6	
0)	90-65N	99	1,0	78,8	1,0	66,7	-	96,0	
Широтные пояса	65-25N	492	-	81,1	_	88,0	-	90,2	
иротнь пояса	25S-25N	630	-	65,9	0,2	64,9	-	72,1	
Пи	25-65S	330	1,2	38,8	0,3	39,4	1,5	38,2	
	65-90S	14	7,1	14,3	_	14,3	7,1	35,7	
		T3	3288 (тол	ько суша	1)				
Земной	шар	2496	0,7	62,3	0,6	67,3	0,9	72,4	
Северно	е полушарие	2105	0,3	67,8	0,1	72,2	0,6	78,1	
Южное	полушарие	391	3,1	32,2	3,3	41,4	2,3	41,7	
Северна	ія Америка	410	1,0	62,0	0,7	58,5	1,2	59,0	
Евразия	[1479	0,1	68,0	-	74,8	0,3	83,8	
Южная	Америка	139	1,4	25,2	2,9	21,6	2,2	22,3	
Африка		130	-	78,5	-	80,0	2,3	73,8	
Австрал	Р КИІ	146	6,8	19,9	5,5	45,2	2,7	41,1	
Антарк	гида	18	5,6	16,7	_	27,8	5,6	38,9	
Европа		546	_	70,9	-	82,1	-	94,3	
Азия		942	0,1	66,6	-	70,6	0,5	77,9	
Арктика	а, 65-90N (суша)	148	-	83,8	-	58,1	-	81,1	

Примечание, Таблица обобщает распределение оценок на рис, 5,2, Процентное содержание рассчитано относительно NN (NN - общее количество станций/боксов в регионе)

ЗАКЛЮЧЕНИЕ

- Летний сезон 2025 г., в целом по Земному шару и полушариям, по всем четырем наборам данных стал третьим самым теплым летним сезоном в истории наблюдений (табл, 2,1), Исключение: суша Южного полушария, где летний сезон был лишь 11-ым /9-ым в соответствующих рядах (по данным массивов T3288/CRUTEM5),
- Положительные сезонные аномалии на территории Земного шара составили около 75% всех локальных данных (станционных и сеточных); в их числе 5%-е экстремумы тепла более 25% данных, Точечные положительные аномалии составляют не менее 42% данных для всех континентов и широтных зон (кроме Австралии: 27,9%),
- Особо следует отметить Тихий океан (20-65N), в котором в этом сезоне установлены новые рекорды пространственно-осредненных аномалий, в среднем за сезон и во все три месяца, Рекордно тепло было в Антарктиде и июне,
- Отрицательные сезонные аномалии наблюдались на 19,6/20,1% всех боксов станций, но доля 5%-х экстремумов холода среди них очень мала (менее 0,1/1,6%), Отрицательные аномалии наблюдались: в Австралии, в Гренландии и в море Лабрадор, в Индии, на востоке Южной Америки, на Дальнем востоке России, в экваториальных широтах на востоке Тихого океана,
- На большей части Земного шара продолжается потепление летних сезонов: 95,6/95,1% станций/боксов показывают положительные тренды, Из них статистически значимых на 5%-м уровне 80,7/77,6%, Регионы наиболее интенсивного потепления Европа: +0,53 °C/10 лет (до +0,61 в августе) и Арктический широтный пояс, 65-90N: +0,41°C/10 лет (до +0,44 в июне)
- Отрицательные тренды подтверждены данными остальных ~4% станций/боксов (это области в Антарктиде, в восточной части Тихого океана и на юге Атлантического океана), из которых статистически значимы на 5%-м уровне 1,2/0,5%,
- На всех континентах, в целом за сезон и в отдельные месяцы, выявлены значительные области статистически незначимого положительного тренда; наиболее обширные из них расположены в Евразии (в основном, в Сибири и на Дальнем Востоке), в Северной Америке (большая часть Канады), в Африке и Австралии,
- Интенсивность (средняя скорость) современного потепления летних сезонов (1976-2025) над сушей выше, чем над океанами (в 1,3-1,7 раза), в Северном полушарии выше, чем в Южном (в 1,2-2,1 раза), и ускорилось в сравнении с последним столетием: в Северном полушарии в 2,2-2,5 раза, в Южном в 1,3-1,8 раз,