О БЮЛЛЕТЕНЕ МОНИТОРИНГА ИЗМЕНЕНИЙ КЛИМАТА ЗЕМНОГО ШАРА (ПРИЗЕМНАЯ ТЕМПЕРАТУРА)

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН»

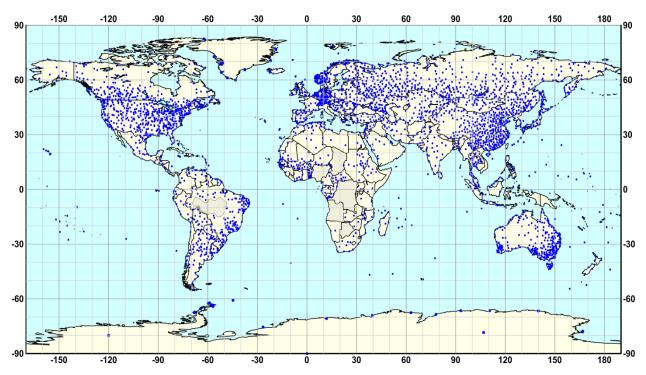
Бюллетень «Изменения климата Земного шара (приземная температура)» выпускается ФГБУ ИГКЭ Росгидромета и РАН, ежесезонно, всего 5 выпусков в год. Сезоны – трехмесячные, календарные; зима начинается с декабря предыдущего года. В сезонных бюллетенях представлены данные истекшего сезона и каждого из входящих в него месяцев. Годовой обзор (за январь-декабрь) включает сведения об основных особенностях всех четырех сезонов и годовые обобщения.

Данные текущих наблюдений формируются в Гидрометцентре РФ и ВНИИГМИ-МЦД из сводок «КЛИМАТ», поступающих по каналам связи в оперативном потоке, откуда передаются в ИГКЭ в форматах архивного хранения (ежемесячно, с задержкой до 20-25 дней следующего месяца). Из Гидрометцентра РФ поступают также данные с более ранними сроками отсечения — это данные синоптических наблюдений (в формате БД МАКТ) с 4-дневным запаздыванием, и данные КЛИМАТ с 10-дневным сроком отсечения. Извлечение необходимых данных, их контроль, обработка и сопряжение с историческими рядами осуществляется в ИГКЭ средствами действующей технологии оперативного мониторинга климата и изменений климата на территории России, доработанной с учетом задач мониторинга глобального климата. Бюллетени публикуются на web-сайте ИГКЭ¹.

В штатном режиме бюллетени выпускаются по данным телеграмм КЛИМАТ во второй половине следующего месяца, т.е. примерно через 1.5 месяца после завершения сезона/года. Предварительные оценки могут быть получены в первой половине наступающего месяца, при использовании для последнего месяца ранних сроков отсечения и/или данных синоптических наблюдений.

Основное содержание бюллетеня составляют данные о климатических аномалиях истекшего сезона/года и обновленные (с учетом этих данных) оценки современных тенденций в изменении климата на территории Земного шара (по разделу «приземная температура»).

Основные результаты относятся к температурному режиму *суши земного шара*. Они получены авторами по данным метеорологических наблюдений (температура приземного воздуха) в массиве Т3288, который содержит данные 3288 станций о средней месячной температуре воздуха на уровне станции (на высоте 2 м) за период с 1901 года. Массив создан и пополняется в квазиреальном времени в рамках действующей в ФГБУ ИГКЭ Росгидромета и РАН системы оперативного мониторинга климата. Каталог станций (список с указанием индексов ВМО, координат и полноты наблюдений) приведен в файле «k3288m05.xls» на web-сайте ИГКЭ¹, а их пространственное распределение – на рис. 1².


Для полноты *глобальной картины* в бюллетене параллельно приводятся оценки по данным массивов HadCRUT_4.4.0.0 (суша+море) и CRUTEM_4.4.0.0 (только суша), которые созданы и поддерживаются совместно двумя научными коллективами –

-

¹ http://climatechange.igce.ru/; http://climatechange.su

² Более подробные данные можно найти в статье Груза Г.В. и др. «Географические и сезонные особенности современного глобального потепления» (Фундаментальная и прикладная климатология, 2015, №2, с. 41-62).

Метеослужба Великобритании (Met Office Hadley Centre) и Университет Восточной Англии (CRU UEA). Все данные этого источника упоминаются в бюллетене как данные Hadley/CRU 3 . На наш взгляд, станционные данные более точно описывают ситуацию *над континентами* (особенно локализацию экстремальных аномалий), а объединенные поля HadCRUT4 дают более полную и цельную глобальную картину о «приповерхностной» температуре *над континентами и океанами* (синоним: приземная температура).

Рисунок 1.1 — Сеть станций в массиве Т3288 (ИГКЭ). Заштрихованы области, не освещенные данными наблюдений. В Гренландии и Антарктиде станции расположены вдоль береговой линии плюс станция AMUNDSEN-SCOTT в центре материка (Южный полюс Земли).

В бюллетене рассматриваются пространственные распределения локальных аномалий и оценок трендов, а также их обобщения для Земного шара в целом, полушарий и крупных регионов: континенты, океаны и основные широтные пояса. К последним относятся: тропический пояс (между северным и южным тропиками), два умеренных пояса (между каждым тропиком и полярным кругом) и два полярных пояса (за северным и южным полярным кругом).

Аномалии, как правило, сопровождаются соответствующими значениями эмпирической функции распределения (вероятности непревышения и/или ранги). В поле аномалий выделяются ареалы осуществления 5%-х экстремумов, под которыми понимаются значения, попавшие в 5%-е «хвосты» распределения (в число 5% самых низких и самых высоких значений рассматриваемой величины). Дополнительно выделяются рекордные экстремумы, наблюдавшиеся в текущем сезоне впервые.

Пространственное осреднение для указанных территорий (регионов) выполняется по данным об аномалиях с учетом плотности наблюдений. Сезонные и годовые средние

³ Данные Hadley/CRU ежемесячно обновляются и публикуются производителем на web-сайтах http://www.MetOffice.gov.uk и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и глобальных временных рядов (для Земного шара и обоих полушарий).

рассчитываются по среднемесячным аномалиям при отсутствии не более одного слагаемого. Название сезона соответствует сезону Северного полушария.

Временные ряды в бюллетене приводятся за весь доступный период наблюдений и дополняются линейным трендом, характеризующим тенденцию (среднюю скорость) изменений рассматриваемой величины на заданном отрезке времени. Тренд рассчитывается методом наименьших квадратов и выражен в градусах за десятилетие (°С/10 лет). Как правило, оценки коэффициентов тренда сопровождаются уровнем статистической значимости и/или вкладом в суммарную дисперсию ряда.

В качестве базового периода при расчете аномалий во всех случаях используется период 1961-1990 гг. Вероятности непревышения и ранги рассчитываются за период с 1911 г. (до этого срока освещенность данными для ряда регионов недостаточна). Оценки трендов приводятся за период «современного потепления» (с 1976 по год выпуска бюллетеня) и, в ряде случаев, за последнее 100-летие. Станция (в случае сеточных данных - бокс) не рассматривается, если объем наблюдений за период оценивания ниже порогового (см. конкретный бюллетень) или в нем отсутствует наблюдение за текущий год (год выпуска).

Дополнительно отметим, что глобальные оценки и глобальные временные ряды для суши Земного шара и полушарий приводятся в бюллетене по обеим методикам — ИГКЭ (Т3288) и Hadley/CRU (CRUTEM4). Их сопоставление дает более четкое представление о реалистичности заключительных оценок и масштабе их неопределенности.

Далее приводится перечень основных разделов бюллетеня (с типовыми таблицами и рисунками) на примере материалов сезонного бюллетеня за 2016-весна.

1. Введение. Содержит общие сведения о выпуске и ссылку на расширенный комментарий «О бюллетене мониторинга изменений климата Земного шара (read me)», размещенный на сайте ИГКЭ и содержащий необходимую базовую информацию (источники данных, сеть станций и полнота наблюдений), описание основных понятий и элементов методики расчета.

2. Температурный режим у поверхности земли на территории Земного шара весной 2016 г. Экстремальные аномалии

Рисунок 2.1 — Временные ряды сезонных аномалий температуры приземного воздуха (°C, 1901-2016 гг., весна), пространственно-осредненных по территории Северного и Южного полушарий и Земного шара. Аномалии приведены в отклонениях от нормы 1961-1990 гг.:

Т3288 – данные и методика осреднения ИГКЭ СRUTEM4 – данные и методика осреднения Hadley/CRU

Таблица 2.1 – Пять самых теплых весен для Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий по данным разных источников: средняя за сезон аномалия температуры VT и год наблюдения

Таблица 2.2 - Пространственно осредненные значения аномалии приземной температуры на территории Земного шара весной 2016 г., в среднем за сезон и по месяцам: Примечания: 1. vT_{2016} , ${}^{o}C$ — наблюденная аномалия в 2016 г. (относительно нормы 1961-1990);

- 2. F% значение функции распределения F=prob (X≤vT₂₀₁₆) по данным за 1911-2015 гг.
- 3. Звездочкой (*) в боковике таблицы выделены временные ряды, полученные по методике Hadley/CRU (для Земного шара и обоих полушарий, скачаны с сайтов источника). Остальные ряды рассчитаны авторами по методике ИГКЭ (по данным HadCRUT4 или T3288, как указано в таблице).
- 4. Жирным шрифтом выделены рекордные значения, осуществившиеся в рассматриваемом сезоне/месяце впервые за период наблюдений (с 1901 г.)

Рисунок 2.2 — Пространственное распределение сезонных аномалий приземной температуры (°C) на территории Земного шара весной 2016 г. Желтыми и белыми кружками указано положение станций с 5%-ми экстремумами (теплыми и холодными, соответственно). Рекордные экстремумы показаны теми же значками большего размера. Аномалии приведены в отклонениях от средних за 1961-1990 гг.

Рисунок 2.3 – См. рис. 2.26, но для средних месячных аномалий весеннего сезона 2016 г. (март, апрель, май) над сушей Земного шара (по данным Т3288, ИГКЭ).

3. Крупномасштабные особенности изменения приземной температуры на территории Земного шара за период инструментальных наблюдений, 1850-2016 гг. (весенний сезон)

Рисунок 3.1 – Изменение средней месячной приповерхностной температуры, осредненной по территории Земного шара (GL), Северного (NH) и Южного (SH) полушарий в течение периода с января 1850 г. по май 2016 г. Использованы глобальные временные ряды с сайтов Hadley/CRU (HadCRUT4, суша+море). 2016 г. – верхняя строка диаграммы (первые 5 месяцев)

Рисунок 3.2 — Изменение пространственно осредненных сезонных аномалий приземной температуры (весна) для Земного шара, Северного и Южного полушарий. Показаны: ход 11-летних скользящих средних, линейный тренд за 1976-2016 гг. и его 95% доверительный интервал:

аномалии температуры приземного воздуха над сушей, CRUTEM4 (Hadley/CRU)
аномалии температуры приземного воздуха над сушей и поверхности океанов,
HadCRUT4 (Hadley/CRU)

Примечание: Использованы оригинальные временные ряды Hadley/CRU, чтобы исключить влияние разных методик обработки и боле четко показать различие между потеплением у поверхности суши и на поверхности океанов

Taблица 3.1 — Коэффициенты линейного тренда (°C/10 лет) пространственно осредненных аномалий приземной температуры для Земного шара и полушарий за 1976-2016 гг. и 1917-2016 гг. (в среднем за весенний сезон и по месяцам)

Примечание. Все оценки в таблице статистически значимы на 1%-м уровне.

Таблица 3.2 — Сравнение скорости потепления весенних сезонов в факторных подгруппах: суша/океан (k_1), СП/ЮП (k_2) и 1976-2016/19017-2016 (k_3)

Условные обозначения

- w доля площади суши для земного шара и полушарий (29.2, 39.3 и 19.1%);
- b коэффициент линейного тренда температуры в соответствующей подгруппе данных;
- $k_I = \mathbf{b}_{\mathrm{CRU}} * (\mathbf{1} \mathbf{w}) / (\mathbf{1} \mathbf{w} * \mathbf{b}_{\mathrm{HadCRU}})$ сравнивает скорость потепления, в среднем по территории Земного шара и каждого полушария, над сушей и океанами; здесь $(\mathbf{1} \mathbf{w} * \mathbf{b}_{\mathrm{HadCRU}}) / (\mathbf{1} \mathbf{w}) = \mathbf{b}_{\mathrm{HadSST}}$ оценка скорости потепления поверхности океанов, рассчитанная по данным на полной сетке HadCRUT. В результате, $\mathbf{k}_1 = \mathbf{b}_{\mathrm{CRU}} / \mathbf{b}_{\mathrm{HadSST}}$ рассчитывается по данным CRUTEM и HadCRUT (Hadley/CRU);
- $k_2 = b_{CII}/b_{IOII}$ сравнивает скорость потепления в среднем, по Северному и Южному полушариям, по данным на полной сетке (HadCRUT, суша+море) и только над сушей (T3288 и CRUTEM);
- $k_3 = b_{1976-2016}/b_{1917-2016}$ сравнивает скорость потепления в «современный» период (с 1976 г.) и за последние 100 лет по всем массивам данных, в Северном и Южном полушариях.

4. Временные ряды пространственно осредненных аномалий приземной температуры, 1911-2016 гг. (весна)

 $Taблица \ 4.1$ — Коэффициенты линейного тренда (${}^{o}C/10 \ леm$) пространственно осредненных аномалий приземной температуры для континентов земного шара, северных частей Атлантического и Тихого океанов и основных широтных поясов, 1976-2016 гг. (в среднем за весенний сезон и по месяцам)

Примечание: Оценки, выделенные серой заливкой, статистически незначимы даже на 10%-м уровне; звездочкой отмечены оценки с уровнем значимости $5\% <= \alpha <= 10\%$. В остальных случаях уровень значимости $\alpha < 1\%$.

Рисунок 4.1 – Временные ряды пространственно осредненных сезонных (весна) аномалий

приземной температуры для континентов (слева), северных частей Атлантического и Тихого океанов (справа вверху) и основных широтных поясов земного шара (справа внизу).

Аномалии приведены в отклонениях от средних за 1961—1990 гг. Показаны: 11-летние скользящие средние (жирные кривые) и линейный тренд за 1976-2016 гг. с 95% -м доверительным интервалом (голубая заливка). Расчеты выполнены по методике ИГКЭ: слева — по данным Т3288 (ИГКЭ), справа - по данным HadCRUT4 (Hadley/CRU).

Рисунок 4.3 — См. рис.4.2, но для океанов и широтных поясов земного шара. Расчеты выполнены по методике ИГКЭ по данным в центрах 5-градусных боксов HadCRUT4 (Hadley/CRU).

5. Географические особенности современных изменений климата Земного шара, 1976-2016 гг. (весенний сезон)

Рисунок 5.1 - Пространственное распределение коэффициентов линейного тренда средней за весенний сезон приземной температуры за период 1976-2016 гг. (в °С/10 лет). Белыми кружками показано положение станций/боксов, на которых тренд статистически значим на 1%-м уровне:

- а) вверху использованы данные Hadley/CRU в 1590 боксов (суша+море). Из них 43.7% значений статистически значимы на 1%-уровне и еще 15.4% на 5%-м. При этом 25.3% всех значений оказались статистически незначимыми (вероятность ложного тренда больше 20%)
- б) внизу использованы станционные данные ИГКЭ (только суша) на 1786 станциях, для которых на 48.3% станций уровень значимости α ≤1%; еще на 15.7% α ≤5%, на 22.9% оценки статистически незначимы (α >20%)

Рисунок 5.2 — См. рис. 5.1, но для коэффициентов линейного тренда средней месячной температуры воздуха (март, апрель, май) над сушей земного шара. Расчет выполнен по станционным данным T3288 (ИГКЭ, только суша) за 1976-2016 гг.

6. Основные выводы

Таким образом, *сезонный* бюллетень содержит данные об аномалиях и трендах, в среднем за сезон и в каждом из входящих в него месяцев.

Годовой обзор включает те же основные разделы, но относящиеся к году в целом и четырем его сезонам. В отдельные выпуски могут быть включены дополнительные материалы и даже разделы.