РОМАНЦОВА НАТАЛЬЯ АЛЕКСАНДРОВНА

ОСОБЕННОСТИ БИОГЕОХИМИЧЕСКИХ ЦИКЛОВ ЦЕЗИЯ-137 В ТРАВЯНИСТЫХ ЭКОСИСТЕМАХ НА РАДИОАКТИВНО ЗАГРЯЗНЕННОЙ ТЕРРИТОРИИ ТУЛЬСКОЙ ОБЛАСТИ

Специальность 03.02.08 - экология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Научный руководитель:	Кандидат биологических наук Татьяна Александровна Парамонова
Официальные оппоненты:	
	Доктор биологических наук Сергей Витальевич Мамихин
	Кандидат географических наук Дмитрий Андреевич Манзон
конференц-зале на заседании дис- «Институт глобального климата и з	сомиться в библиотеке ФГБУ «Институт
Автореферат разослан «» _	•
заседании диссертационного совет	участие в обсуждении диссертации на а или присылать отзывы на автореферат в нечатью, по адресу: 107258, Москва, тарю диссертационного совета.
Ученый секретарь	
диссертационного совета	
доктор географических наук, профессор	Черногаева Г.М.
профессор	Tehnoi acra 1 'Mi'

Работа выполнена на базе ФГБУ «Институт глобального климата

и экологии Росгидромета и РАН».

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследований.

В условиях напряженной экологической ситуации, складывающейся в мире, одной из наиболее актуальных проблем является загрязнение наземных экосистем техногенными радионуклидами. Так, в результате аварии на 1986 году на Европейской части Чернобыльской АЭС сформировался обширный регион с плотностью загрязнения радиоцезием ≥ 1 Ки/км² (≥ 37 кБк/м²), площадь которого составила более 15 млн. га (Израэль и др., 1998). Наибольшие уровни радиоактивного загрязнения пришлись при этом на территории Брянской, Калужской, Орловской и Тульской областей, плодородные почвы которых интенсивно использовались и продолжают использоваться в сельском хозяйстве. В этой аварию на Чернобыльской АЭС онжом c классифицировать как экологически тяжелую для сельского хозяйства (Алексахин, 2006, Панов и др., 2007).

Среди «чернобыльских» радионуклидов наиболее экологически значимым при рассмотрении последствий радиоактивного загрязнения является $^{137}\mathrm{Cs}$ — массово поступивший в наземные экосистемы долгоживущий радиоизотоп (период полураспада ≈ 30 лет), который прочно фиксируется в почве (Черных, Овчаренко, 2002; Фокин и др., 2005).

Прогнозные оценки показывают, что загрязненные радиоцезием районы Европейской части России будут сохранять свой статус вплоть до середины XXI века, а наиболее пораженные участки в их пределах — до конца столетия (Атлас современных и прогнозных аспектов ..., 2009).

Долговременность создаваемого ¹³⁷Cs загрязнения почв, а также возможность его распространения по пищевым цепочкам, конечным потребителем в которой является человек, определяет актуальность изучения поведения ¹³⁷Cs в экосистемах, а также поиск закономерностей распределения радионуклида по компонентам окружающей среды.

Целью работы в рамках указанной проблемы является изучение особенностей биогеохимических циклов ¹³⁷Cs чернобыльских выпадений в природных и агрогенных травянистых экосистемах радиоактивно загрязненной территории Тульской области.

Задачи исследования:

- 1. Выявление уровня современного радиоактивного загрязнения почв и растительности травянистых экосистем Плавского радиоактивного пятна Тульской области техногенным ¹³⁷Cs.
- 2. Анализ особенностей накопления и глубины массового проникновения $^{137}\mathrm{Cs}$ в почвах территории в отдаленный период после чернобыльской аварии.
- 3. Установление параметров, закономерностей и особенностей перехода ¹³⁷Cs в растительность природных и агрогенных фитоценозов при корневом потреблении радионуклида.
- 4. Оценка баланса ¹³⁷Cs в системе «почва-растение» автономных и гетерономных геохимических ландшафтов исследованной территории.

5. Определение экологической значимости аккумуляции и динамики накопления радиоцезия в почвах и продукции растениеводства радиоактивно пораженных районов Тульской области.

На защиту выносятся следующие положения:

- В постчернобыльское время на территории Плавского радиоактивного пятна в пределах геохимически сопряженных ландшафтов произошло увеличение неоднородности ореолов загрязнения почв ¹³⁷Cs. Почвы аккумулятивных позиций ландшафта характеризуются достоверно повышенной плотностью загрязнения радиоцезием и должны обязательным образом включаться в систему радиоэкологического мониторинга земель.
- Аккумуляция ¹³⁷Cs в травянистых фитоценозах зависит от плотности радиоактивного загрязнения почв, структуры растительных сообществ, биологических особенностей доминантных видов (общая фитомасса, доля корней в общей фитомассе, жизненный цикл растения и др.) и более выражена в природных луговых сообществах, чем агрофитоценозах.
- ¹³⁷Cs характеризуется низким биологическим потреблением и отсутствием избирательного поглощения растениями из почвы. При этом основное накопление радионуклида в исследованных агрогенных и природных травянистых фитоценозах происходит в корневой системе растений, а процессы транслокации ¹³⁷Cs в надземные органы подавлены.
- ¹³⁷Cs и ⁴⁰K, являясь химическими аналогами, имеют различные особенности биогеохимических циклов в травянистых фитоценозах, радиоактивно загрязненных земель.
- Экологическая оценка современных уровней накопления ¹³⁷Cs в продукции растениеводства Плавского радиоактивного пятна показала, что при сохранении почвами территории статуса радиоактивно загрязненных, уровни накопления ¹³⁷Cs в растительной продукции (зерне культурных злаков, картофеле и поедаемой части луговых трав) очень низкие и полностью соответствуют нормативным показателям допустимого накопления.

Научная новизна работы:

- Количественно показаны особенности радиоэкологической обстановки и структуры полей загрязнения почв ¹³⁷Cs в пределах Плавского радиоактивного пятна Тульской области через 25 лет после чернобыльской аварии.
- В условиях установившихся биогеохимических циклов впервые дана оценка параметров накопления ¹³⁷Cs в надземной и подземной фракциях травянистой растительности природных и агрогенных фитоценозов и выявлена ключевая роль корневой фитомассы в процессах депонирования радионуклида.
- Впервые установлены параметры миграции ¹³⁷Cs в системе «почварастение» с учетом аккумуляции радионуклида в растении в целом, в его вегетативных зеленых частях и корневой фитомассе в зависимости от биологических особенностей видов растений и плотности радиоактивного загрязнения почв Плавского радиоактивного пятна.

Практическая значимость работы.

- Полученные данные по содержанию ¹³⁷Cs в почвах и растительности травянистых агрогенных и луговых экосистем Плавского радиоактивного пятна Тульской области могут быть использованы для оценки и прогноза радиоэкологического состояния почв и продукции растениеводства в пределах территории, пострадавшей при аварии на Чернобыльской АЭС.
- Фактические оценки современного баланса ¹³⁷Cs в системе «почварастение» исследованных радиоактивно загрязненных ландшафтов могут быть интегрированы в базы данных по биологической доступности радионуклидов, в том числе в международных программах "BORIS: Bioavailability of Radionuclides in Soils", "EMRAS: Environmental Modelling for Radiation Safety", а также использованы для верификации моделей биогеохимических циклов ¹³⁷Cs в наземных экосистемах.
- Результаты исследования могут быть использованы для оптимизации сети государственного радиационного контроля и разработки природоохранных и реабилитационных мероприятий для ландшафтов лесостепной и степной зон европейской территории России.

Личный вклад автора. Собственные исследования автора включали следующие виды работ: почвенно-геохимическое опробование почв и растительности в системе сопряженных наземных ландшафтов (опробование склонов в верховье, средней и нижней частях балки по линиям стока); отбор образцов почвы для химически и радиоэкологических исследований; произведен сплошной укос растительности с определением общей биомассы растительности и параметров вовлечения ¹³⁷Сs в биогеохимические циклы; проведение лабораторных исследований, включающих в себя определение удельной активности ¹³⁷Сs в образцах почв и растительности методом гаммаспектрометрии (удельная активность цезия в растениях, запасы цезия в растительности коэффициент биологического перехода из почвы в растения); анализ полученных результатов; сопоставление полученных данных с результатами других исследователей.

Апробация работы. Материалы исследований по теме диссертации докладывались и обсуждались на следующих конференциях: Всероссийская научно-практическая конференция «Актуальные проблемы экологии и природопользования» (Москва, 2011); Всероссийская научно-практическая конференция «Актуальные проблемы экологии и природопользования» (Москва, 2012).

Публикации. По теме диссертации опубликовано 3 печатных работы, в том числе 1 статья в издании, рекомендованном ВАК, 3 статьи находятся в печати.

Структура и объем работы. Диссертация состоит из введения, 7 глав, выводов, списка литературы, состоящего из 100 источников, в том числе 30 на иностранном языках. Содержательная часть работы изложена на 152 страницах текста, иллюстрирована 20 рисунками, включает 16 таблиц.

Благодарности: Автор выражает глубокую признательность своему научному руководителю к.б.н. Т.А. Парамоновой за руководство исследованиями, всестороннюю помощь и поддержку.

Полевые работы проводились на средства гранта РФФИ №10-05-00976 в составе комплексной экспедиции Географического факультета МГУ им. М.В.Ломоносова, сотрудникам которого д.г.н. Голосову В.Н., к.г.н. Ивановой Н.Н., к.г.н. Беляеву В.Р. и к.г.н. Маркелову М.В. автор приносит искреннюю благодарность.

Глава I. Радиоактивное загрязнение наземных экосистем ¹³⁷Cs.

Авария на Чернобыльской АЭС, произошедшая в 1986 г., имела значительные экологические последствия. Благодаря мельчайшим размерам и химической устойчивости долгоживущие радиоизотопы, прежде всего ¹³⁷Cs, распространялись в тропосфере и очень медленно оседали на подстилающую поверхность, поступая в наземные и водные экосистемы. В пределах обширного поля загрязнения европейской территории России (ЕТР) радиоцезием при ЭТОМ образовались относительно компактные «радиоактивные пятна» – районы массовых конденсационных выпадений чернобыльского ¹³⁷Cs с атмосферными осадками, которые маркируют основные направления переноса радионуклидов от источника выбросов. Картографирование плотности загрязнения местности техногенным ¹³⁷Cs, чернобыльской сотрудниками проведенное после аварии Госгидромета и РАН под руководством Ю.А.Израэля, показало, что одним из наиболее выраженных в пределах ЕТР ореолов радиоактивного загрязнения почвенно-растительного покрова является Плавское пятно (рис.1), плотность поверхностного загрязнения почв ¹³⁷Cs в пределах которого в первые годы после аварии составляла 5-15 Ки/км².

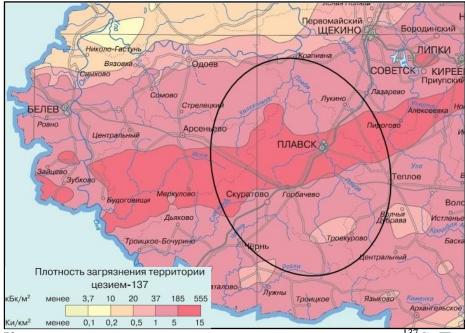


Рис.1. Карта-схема плотности поверхностного загрязнения почв ¹³⁷Cs Плавского радиоактивного пятна после Чернобыльской аварии (Атлас радиоактивного загрязнения..., 1986)

Первичное загрязнение наземных ландшафтов ¹³⁷Cs зависело как от погодных условий, так и от «архитектурных» характеристик фитоценозов (высоты, степени сомкнутости, облиствененности и др.) (Клечковский, 1956; Караваева, 1973; Молчанова, 1973; Павлоцкая, 1974; Тихомиров, 1982; Пристер, 1991; Алексахин, 1995; Фесенко, 1998; Фокин, 2005 и др.). Со временем происходило увеличение неоднородности внутренней структуры ореолов радиоактивного загрязнения местности за счет латерального перераспределения ¹³⁷Cs в системе сопряженных геохимических ландшафтов (Кузнецов, 2000; Голосов В.Н., Квасникова, 1994, Фридман, 1994; Линник, 2008; He Q., Walling D.E., 2004). Одновременно с этим произошел практически полный переход ¹³⁷Cs в почву, и начал формироваться поток косвенного загрязнения растительности вследствие корневого потребления радионуклида (Юдинцева, 1968; Титаева, 2000; Богдевич, 2001; Фокин, Лурье, 2005; Кузнецов, 2009; Санжарова, 2009 и др.). Корневое потребление 137Cs растительностью определяется рядом факторов, которые можно объединить в группы: 1) физико-химические свойства радионуклида, его кларки и время, прошедшее после его поступления в экосистему, 2) свойства почв и особенности их антропогенного использования, 3) биологические особенности растений и 4) общие ландшафтно-климатические особенности местности и погодные условия текущего вегетационного сезона (Моисеев, 1982; Пристер, 1991; Алексахин, 1992; Фокин, Лурье, 2005; Salt C.A., Kay J.W., Jarvis K.E., 2004 и др.). В настоящее время в травянистых экосистемах сформировались относительно устойчивые биогеохимические циклы ¹³⁷Cs, и установилось специфическое распределение радионуклида в системе «почварастение». Разомкнутость биогеохимических циклов ¹³⁷Cs и постепенное изменение их параметров связано с радиоактивным распадом ¹³⁷Cs (период полураспада ~30 лет), его отчуждением с используемой частью продукции растениеводства и животноводства, перераспределением ¹³⁷Cs между сопряженными ландшафтами (Маркина, 1987; Корнеев, 1988; Алексахин, 1992; Фокин, 2005; Кузнецов, Грунская, 2009 и др.).

Глава II. Природные условия и радиационная обстановка в пределах Плавского радиоактивного пятна

Плавское радиоактивное пятно сформировалось в пределах Плавского плато, приуроченного к центральной части Среднерусской возвышенности и протянувшегося по водоразделам рек Дон, Плава и Упа. Поверхность представляет собой волнистую равнину с абсолютными высотами около 250-290 м, сильно расчлененную долинами малых рек и балками (Добровольский, Урусевская, 1972; Агроклиматическое районирование, 1967).

Климат умеренно континентальный со среднегодовой температурой $+3.8^{\circ}$ C $-+4.5^{\circ}$ C и количеством осадков 450-650 мм, из которых третья часть приходится на летние месяцы (Овчинников, 2000).

Преобладающими покровными отложениями на территории являются карбонатные лёссовидные суглинки мощностью 3-6 м, которые практически

повсеместно, за исключением речных пойм, являются почвообразующими породами (Добровольский, Урусевская, 1972).

Растительный покров территории относится к биоклиматической зоне лесостепи, однако в настоящее время лесами заняты весьма незначительные площади, приуроченные к склонам балок и лощин. Основная часть современных ландшафтов относится к агрогенным экосистемам, поскольку степень земледельческой освоенности достигает 92% (из них пашня – 78%) (Добровольский, Урусевская, 1972).

Почвы территории входят состав Новомосковско-Плавского В почвенного района оподзоленных и выщелоченных черноземов, которые водоразделов В пределах И склонов. Незначительное распространение имеют серые лесные почвы, лугово-черноземные почвы и аллювиальные почвы речных долин (Добровольский, Урусевская, 1980; Классификация и диагностика почв..., 1977).

В первые годы после Чернобыльской аварии плотность поверхностного ¹³⁷Cs в пределах Плавского радиоактивного пятна загрязнения почв составляла 5-15 Ки/км² (Израэль, 1998). В настоящее время, по данным государственного экологического надзора, районе сохраняется напряженная обстановка: значения мощности радиоэкологическая экспозиционной дозы внешнего гамма-излучения в г. Плавск составляют ~0,3 мк3в/час при норме $\sim 0,1$ мк3в/час (Государственный доклад о состоянии и об охране окружающей среды Российской Федерации в 2009 г.). Согласно прогнозам специалистов, загрязнение почв радиоцезием будет сохранять свой статус вплоть до середины XXI века, а наиболее пораженные участки в пределах радиоактивных пятен – до конца столетия (Атлас современных и прогнозных..., 2009).

Глава III. Район, объекты и методы исследования

Районом проведения работ по изучению параметров и особенностей ¹³⁷Cs распределения R системе «почва-растение» на радиоактивно загрязненных области землях Тульской послужила верхняя водосборного бассейна р.Локна – притока 1-го порядка р.Плава. Бассейн р.Локна, согласно данным В.Н.Голосова с сотр. (1998, 1999, 2000 и др.), приурочен к эпицентру Плавского радиоактивного пятна и спустя 10-15 лет после чернобыльской аварии характеризовался плотностью загрязнения почв 137 Cs 8-16 Ки/км 2 . Природная матрица ландшафта типична для лесостепи – луговой степи и представлена плоско-выпуклыми водораздельными поверхностями и их склонами с абсолютными высотами 215-240 м, расчлененными поймой реки и сетью балок, основная поверхность которых занята пахотными угодьями. Естественные луговые биогеоценозы сохранились только на неудобных для пахоты местах – в пойме р.Локны и в нижних покатых частях склонов.

На участке «Верхняя Локна» были выбраны опорные площадки в агрофитоценозах основных культур полевого севооборота (яровые пшеница и ячмень, картофель) и в природных луговых фитоценозах злаково-

разнотравного суходольного луга (используемого как пастбище) и влажного разнотравно-злакового пойменного луга (травостой которого может

подвергаться сенокошению) (рис.2, табл.1).

Рис.2 Опорные площадки пробоотбора на участке «Верхняя Локна».

Агрофитоценозы располагались возвышенной на И относительно выположенной части водораздельной поверхности, что определяет их принадлежность к элювиальному ландшафту. Фитоценоз суходольного луга располагался в нижней присклоновой части водораздела и приурочен к транзитно-аккумулятивному ландшафту. Влажный луг находился в пойме р.Локна и приурочен к аккумулятивному ландшафту. В совокупности пробоотбора образуют косвенного участки катену геохимического сопряжения (см. табл. 1).

Таблица 1: Характеристика опорных площадок на участке «Верхняя Локна»

	Агрофитоценозы			Природные	Природные фитоценозы		
Показатель	пшеница	ячмень картофель		суходольный луг	влажный луг		
Координаты							
с.ш.	53,647605°	53,632094°	53,631902°	53,637846°	53,636938°		
в.д.	37,015508°	37,083559°	37,083195°	37,067606°	37,066525°		
Абс. высота, м	236	238	237	208	194		
Положение в рельефе	Водораздельная поверхность		Склон водораздела	Пойма			
Покровные отложения	Лёссовидные суглинки				Аллювиальные суглинки		
Почвы	Черноземы выщелоченные пахотные		Чернозем выщелоченн ый	Аллювиальная карбонатная			
Угодье	Пашня		Пастбище	луговая Сенокос			

На момент проведение исследований (к концу сезона вегетации 2011 г.) агрофитоценозы были засорены слабо и практически представляли собой монокультурные сообщества (яровая пшеница сорта Мис, яровой ячмень сорта Нур, картофель Журавлинка); фитоценоз суходольного луга был представлен следующими видами растений: мятлик луговой, кострец

безостый, бор развесистый, ежа сборная, цикорий обыкновенный, мышиный горошек, земляника зеленая, лапчатка прямостоячая и др.; фитоценоз влажного луга представлен такими видами растений как: вейник седеющий, кострец безостый, мать-и-мачеха, конский щавель, бодяк полевой и др.

На опорных площадках были отобраны образцы надземной части с площадок фитомассы методом сплошных укосов 50x50соответствует методическим подходам К определению запасов растительной фитомассе (Гришина, Самойлова, 1971). Подземную фракцию фитомассы растений отмывали из монолитов почв с площадью сечения 25х25 см и глубиной 30 см, что соответствовало основному корнеобитаемому слою. Одновременно с этим с помощью бура отбирались образцы почвенных монолитов диаметром ≈ 8 см и глубиной 0-30 см, а также производился послойный отбор почв с глубин 0-10 см, 10-20 см и 20-30 см. Все пробоотборы проводились в 4-х кратной повторности.

Пробы высушивались до абсолютно сухого состояния, затем образцы растительности размалывались на мельнице, а образцы почвы растирались и просеивались через сито с ячейками диаметром 1 мм.

Определение содержания ¹³⁷Cs в почвах и растительности проводилось на сцинтилляционном гамма-спектрометре с обработкой амплитудного спектра импульсов с помощью программы ПРОГРЕСС. Относительная погрешность определения удельной активности радионуклидов составляла 10-25%.

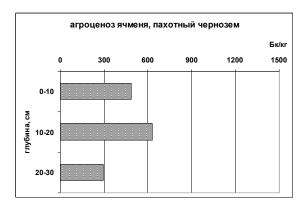
Глава IV. Современные особенности накопления ¹³⁷Cs в почвах Плавского радиоактивного пятна

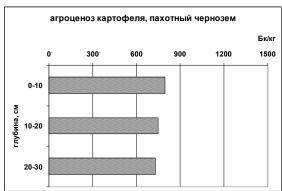
Почвенный покров участка «Верхняя Локна» образован сочетанием черноземов выщелоченных и оподзоленных на водоразделе и его склонах с аллювиальными карбонатными луговыми почвами поймы р.Локна. Основные морфологические, физические, химические и агрохимические свойства почв района исследования слабо дифференцированы в пространстве и по профилю почв (за исключением распределения гумуса) и характеризуются близкими показателями (табл.2).

Таблица 2: Основные свойства почв участка «Верхняя Локна»

Показатель	Черноземы типичные	Аллювиальная луговая	
		почва	
Формула профиля	$A_{\text{max}} - A_{\text{ct.max}} - A - AB - B_{\kappa} - BC_{\kappa}$	$A_{\text{II}} - A - AC_{(\kappa)} - C_{\kappa}$	
Глубина нижней	$18 (A_{\text{пах}}) - 24 (A_{\text{ст.пах}}) - 49 (A) -$	$10 (A_{\text{A}}) - 20 (A) - 24 (AC) -$	
границы горизонтов, см	$78 \text{ (AB)} - 100 \text{ (B}_{\kappa})$	110 (C _K)	
Гранулометрический	Средний суглинок		
состав			
Плотность сложения,	$1,16 (A_{\text{пах}}) - 1,23 (A_{\text{ст.пах}}) - 1,27$	$1,16 (A_{\text{A}}) - 1,47 (A) - 1,33$	
Γ/cm^3	$(A) - 1.33 (AB) - 1.39 (B_{\kappa})$	(C_{κ})	
Содержание гумуса, %	$7,7 (A_{\text{max}}) - 6,9 (A_{\text{ст.max}}) - 7,2 (A)$	$5.8 (A_{\pi}) - 3.8 (A) - 3.0 (C_{\kappa})$	
	$-5.1 \text{ (AB)} - 0.5 \text{ (B}_{\kappa})$		
$pH_{водн}$	$7,1 (A_{\text{max}}) - 7,2 (A_{\text{ст.max}}) - 7,3 (A)$	$6.9 (A_{\pi}) - 7.1 (A) - 7.5 (C_{\kappa})$	
	$-7.4 \text{ (AB)} -7.7 \text{ (B}_{\kappa})$		

Содержание естественных радионуклидов в почвах опорных площадей также неспецифично для различных позиций ландшафта (табл. 3) и соответствует типичным показателям, отмечаемым для почв ЕТР и мира (Титаева, 2000).


Таблица 3. Величины удельной активности основных естественных радионуклидов


и техногенного ¹³⁷Cs в почвах участка «Верхняя Локна»

	Агрофитоценозы			Фитоценозы	
Бк/кг	пшеница	ячмень	картофель	суходольный луг	влажный луг
$^{40}\mathrm{K}$	473,4	553,8	512,5	465,1	527,4
²³² Th	32,1	40,8	52,4	43,6	49,0
²²⁶ Ra	39,6	12,1	25,6	44,1	4,1
¹³⁷ Cs	494,5	623,8	537,1	1121,2	1038,8

Иной характер имеют особенности накопления в почвах территории техногенного ¹³⁷Cs (см. табл. 3). Прежде всего, современные уровни удельной активности ¹³⁷Cs в почвах составляют ~500-1100 Бк/кг, что соответствует плотности поверхностного радиоактивного загрязнения 30-см слоя ~200-430 $\kappa E \kappa / M^2$ (или 5,4-11,6 $K u / \kappa M^2$) и существенно превосходят фоновые (~10 кБк/м 2) или нормативно допустимые (≤37 кБк/м 2) параметры. Кроме того, в 137Cs в ландшафте обнаруживается пространственном распределении значительная неоднородность: в пахотных черноземах водораздельной поверхности величины удельной активности радионуклида ~ в 2 раза меньше, чем в целинных почвах подножья склона и поймы р.Локны. Величины плотности радиоактивного загрязнения верхнего 30-см слоя почв радиоцезием оцениваются как $180-270 \text{ кБк/м}^2 (5,4-7,3 \text{ Ки/км}^2)$, а в почвах транзитно-аккумулятивного аккумулятивного ландшафтов увеличиваются до 390-430 кБк/м² (10,5-11,5 Ки/км²). Таким образом, подтверждается факт значимого вторичного перераспределения постчернобыльский период в почвах произошедшего В ландшафтов, которое протекает вследствие эрозионного массопереноса мелкозема почв (Кузнецов, Санжарова, 1997; Борзилов, Коноплев, 1988; Голосов, 2000, Линник, 2008).

Различные особенности имеет профильное распределение ¹³⁷Cs в пахотных почвах агроценозов и в целинных почвах луговых природных фитоценозов (рис.3). Глубина массового проникновения ¹³⁷Cs в пахотных черноземах больше, чем в целинных почвах, и практически полностью определяется процессом агротурбации и мощностью оборотного пласта, которая варьирует в районе исследования от 10 см до 30 см. В почвах природных фитоценозов радиальная миграция ¹³⁷Cs по профилю происходит диффузии, турбационной благодаря медленно текущему процессу деятельности почвенной мезофауны, а также во многом зависит от мощности ризосферы и процессам обмена между почвой и корнями растений. В целом, луговых фитоценозах существенно более природных локализация основной массы ¹³⁷Cs в поверхностном 10-см слое почв.

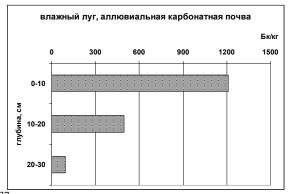


Рис. 3. Профильное распределение ¹³⁷Cs в пахотных почвах агроценозов и в целинных почвах луговых природных фитоценозов участка «Верхняя Локна»

Глава V. Современные особенности накопления ¹³⁷Cs в растительности травянистых фитоценозов Плавского радиоактивного пятна

Оценка запасов фитомассы в различных природных и агрогенных фитоценозов исследованной территории Плавского радиоактивного пятна, показала, что общая биопродуктивность естественных фитоценозов в 2-4 раза выше, чем у сельскохозяйственных культур. При этом соотношение фракции подземной и надземной фитомассы в исследуемых растительных сообществах существенно отличаются (табл. 4).

Таблица 4. Фитомасса природных и агрофитоценозов участка «Верхняя Локна»

	Агрофитоценозы			Луговые фитоценозы	
Показатель	пшеница	ячмень	картофель	суходольный	влажный
				луг	луг
Общая фитомасса, кг/м ²	0,99	0,89	2,31	4,00	4,37
Надземная фитомасса, $\kappa \Gamma/M^2$	0,76	0,67	0,39	0,4	0,93
Подземная фитомасса, $\kappa \Gamma/M^2$	0,23	0,22	1,92	3,6	3,44
Соотношение надземной и подземной фитомассы, %	77 / 23	75 / 25	17 / 83	9 / 91	21 / 79

80-90% фитомассы луговой растительности относится к подземной части и преимущественно представлено корнями многолетних дерновинных

злаков. Контрастное распределение надземной и подземной фитомассы луговой растительности согласуются с известными данными (Родин, Базилевич, 1965). Более 80% фитомассы сосредоточено под землей также в агрофитоценозе с картофелем, однако его клубни являются не корнями, а видоизмененным побегом растения. В растительных сообществах с доминированием культурных злаков фитомасса надземной части преобладает над подземной фракцией и составляет 75% от общей фитомассы растений.

Анализ содержания естественных радионуклидов и радиоцезия в фитомассе культурных растений (пшеницы, ячменя, картофеля) и луговых растительных сообществ характеризуются относительно высокими величинами средневзвешенной (по массе) удельной активности 40 K, которые во много раз превышают уровни концентрации других радионуклидов природного и техногенного происхождения – 137 Cs, 232 Th, 226 Ra (табл.5).

Таблица 5. Величины удельной активности основных естественных радионуклидов и техногенного ¹³⁷Cs в растительности травянистых фитоценозов участка «Верхняя Локна»

	Агрофитоценозы			Фитоценозы		
Бк/кг	пшеница	ячмень	картофель	суходольный луг	влажный луг	
⁴⁰ K	219,6	253,7	614,8	283,4	711,7	
²³² Th	47,7	20,1	29,3	70,4	11,7	
²²⁶ Ra	16,3	19,1	26,8	69,8	35,8	
¹³⁷ Cs	74	138	51	753	657	

Это подтверждает тот факт, что ⁴⁰К, как и его стабильные изотопы, является неотъемлемой частью растений и необходим для их нормального развития (Алексахин, Корнеев, 1992; Титаева, 2000; Левин, 2008).

Абсолютные величины удельной активности остальных исследуемых естественных радионуклидов меньше чем у 40 K, так как известно, что 232 Th, 226 Ra в отличия от радиоизотопов калия не являются жизненно необходимыми элементами для растений (Титаева, 2000). При этом следует отметить, что значения содержания радиоизотопа тория и радия в растительности исследуемых фитоценозов находятся в одном диапазоне величин и составляют $\sim 11.7-69.8$ Бк/кг.

Несколько другая картина характерна для ¹³⁷Cs, который подобно ²³²Th, ²²⁶Ra не является биогенным элементом и даже выступает в роли токсиканта. Величина его средневзвешенной по массе удельной активности в луговых сообществах на порядок больше, чем в агроценозах. Из с/х культур активность радиоцезия несколько больше в сообществах культурных злаков, в частности, ячменя (см. табл. 5).

В целом, в порядке убывания величины удельной активности ¹³⁷Cs в фитомассе исследованных фитоценозов они ранжируются так: суходольный луг (злаково-разнотравный) > влажный луг (разнотравно-злаковый) > ячмень > пшеница и картофель. Это во многом определяется структурой фитомассы растительных сообществ и биологическими особенностями его доминантных видов (Кузнецов, Санжарова, 2009). Так, например, злаки накапливают в

своей надземной части наименьшее количество радиоактивного ¹³⁷Cs (Алексахин, 1992 и др.). Кроме того, известно, что листья и стебли накапливают больше радионуклидов, чем генеративные органы (Кузнецов, Санжарова, 1997).

Распределение величин удельной активности ¹³⁷Cs в надземной и подземной фракциях фитомассы растительности исследованных фитоценозов (за исключением агроценоза картофеля) характеризуется высокой неоднородностью — содержание радионуклида в корнях на порядок превышает уровень его концентрации в надземной части (рис.4).

Особенно высок контраст распределения величин удельной активности ¹³⁷Сѕ между корнями растений и их зеленой частью в природных луговых фитоценозах, где значительную долю растений составляют многолетние злаки, время жизни корней которых достигает 5-6 лет. Содержание ¹³⁷Сѕ в подземной и надземной частях картофеля, напротив, практически идентично по величинам концентраций.

Факт существенно повышенной концентрации ¹³⁷Cs в корневой массе сравнению с фракцией побега был установлен рядом исследователей на лабораторных зарубежных основании экспериментов (Shaw and Bell, 1989; Brambilla et al., 2002; Ehlken and Kirchner, 2002; Staunton et al., 2003) и в единичных случаях подтвержден натурными наблюдениями в вегетационных опытах (Abu-Khadra S.A., Abdel-Sabour M.F., 2008). Контрастное и специфическое для групп растений распределение ¹³⁷Cs между корнями и побегами свидетельствует о сложных физиологических механизмах транслокации радионуклида и наличии защитных барьеров, препятствующих поступлению избыточного количества ¹³⁷Сs в побеги. Часть ¹³⁷Сs может оставаться в составе отмершей корневой биомассы, что замедляет его переход в минеральную часть почвы с последующей прочной фиксацией на глинистых минералах, НО благоприятствует реутилизации радионуклида в растения (Фокин, 2004).

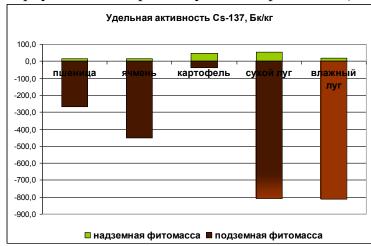
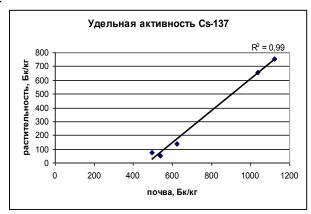



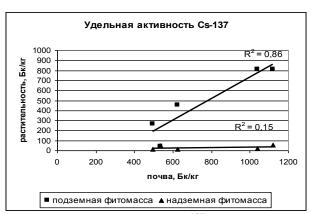
Рис. 4. Распределение величин удельной активности ¹³⁷Cs в надземной и подземной фракциях растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна»

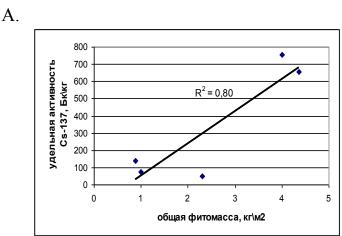
Зависимость перехода ¹³⁷Cs в растения от содержания радионуклида в почвах

На уровень аккумуляции ¹³⁷Cs в фитомассе растений сильное влияние оказывает уровень радиоактивного загрязнения почв. На исследуемой территории Плавского радиоактивного пятна величины аккумуляции радиоцезия в почве и в растительности находятся в прямо пропорциональной коэффициентом корреляции 0,99. Таким, образом, зависимости повышенная плотность радиоактивного загрязнения почв геохимически подчиненных ландшафтов напрямую отражается на уровнях аккумуляции ¹³⁷Cs в фитомассе растений (рис. 5A). Полученные результаты согласуются с выводами других исследователей (Кузнецов, Санжарова, 1997). Кроме того, имеются данные полученные на основании лабораторных модельных экспериментов, которые зависимость показывают радионуклидов в растениях от их концентрации в почвенном растворе (Brambilla et al., 2002).

A

Б.




Рис. 5. Зависимость величины удельной активности ¹³⁷Cs: А. – в общей фитомассе, Б. – в надземной и подземной фракциях фитомассы растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна» от величины удельной активности ¹³⁷Cs в почвах

Анализ зависимости уровней аккумуляции радионуклидов в надземной и подземной фракции растительности сельскохозяйственных и природных травянистых фитоценозов от уровней их накопления в почвах показывает, что величины удельной активности 137 Cs в надземной фитомассе не зависят от уровня радиоактивного загрязнения почв (коэффициент детерминации R^2

0,15), в то время, как удельная активность 137 Cs в подземной фитомассе тесно зависит от уровня радиоактивного загрязнения территории (коэффициент детерминации R^2 0,86) (рис. 5Б).

Зависимость корневого потребления ¹³⁷Cs от биологических особенностей растений

Анализ зависимости уровней аккумуляции радионуклидов в фитомассе растительности сельскохозяйственных и природных травянистых фитоценозов от общей фитомассы растительности показал, что они находятся в прямо пропорциональной зависимости с коэффициентом детерминации 0,8 (рис. 6A). Чем выше биологическая продуктивность фитоценозов, тем больше радиоцезия в ней накапливается. Фитоценозы, в которых доминируют быстрорастущие виды растений, аккумулируют ¹³⁷Cs больше.

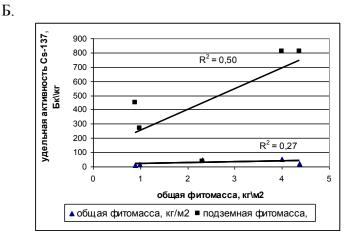


Рис. 6. Зависимость величины удельной активности ¹³⁷Cs: A – в общей фитомассе, Б – в надземной и подземной фракциях фитомассы растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна» от фитомассы

Зависимости этих величин в надземной и подземной фракциях существенно отличаются. Величины удельной активности ¹³⁷Cs в надземной фитомассе (рис. 6.А) не зависят от биологической продуктивности растений (коэффициент детерминации 0,27). По-видимому, интенсивность синтеза вегетирующих частей растений не влияет на процессы транслокации в них ¹³⁷Cs. Косвенным подтверждением этого предположения является то, что

накопление ¹³⁷Cs в урожае многолетних злаковых трав незначительно различалось в зависимости от срока уборки урожая (Кузнецов, Грунская и др., 2008).

Между величинами удельной активности И запасом подземной наблюдается более (коэффициент фитомассы тесная взаимосвязь детерминации 0,5) (рис. 6.Б). В этой связи поскольку радиоцезий сосредоточен в основном в подземной фракции растительности, то чем представлена В растительном сообществе, средневзвешенная величина удельной активности ¹³⁷Cs в общей фитомассе (рис.7).

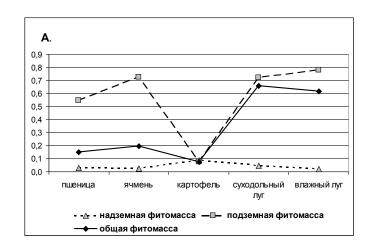



Рис. 7. Зависимость величины удельной активности ¹³⁷Cs в фитомассе растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна» от доли корней в общей фитомассе

Зависимость накопления ¹³⁷Cs от биологических особенностей растений хорошо демонстрирует анализ величин коэффициентов накопления (КН – отношение величин удельной активности радионуклидов в сухой массе растений и почвы) и коэффициентов перехода (КП – отношение удельной активности радиоцезия в растениях к плотности радиоактивного загрязнения почвы) ¹³⁷Сѕ из почв в растения. Показатели КН и КП ¹³⁷Сѕ в подземной фитомассе во всех исследуемых фитоценозах существенно выше, чем в надземной (рис. 8), что приводит к повышению значений коэффициентов в общей фитомассе растительности природных лугов, где корневая система решающий формирование многолетних трав вносит вклад В средневзвешенной удельной активности ¹³⁷Cs в растительности. Разница в значениях коэффициентов накопления и перехода в надземной части растений в случае агрофитоценозов культурных злаков и природных луговых сообществ сглажена, а в агрофитозенозе картофеля КН и КП заметно выше. Таким образом, выявляются биологические различия по накоплению ¹³⁷Cs на форм растений, что уровне семейств и жизненных предположения других исследователей (Ehlken, Kirchner, 2002; Staunton et al., 2003).

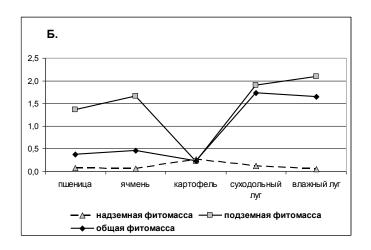


Рис. 8. Коэффициенты накопления (A) и перехода (Б) ¹³⁷Cs в надземную и подземную фракции фитомассы растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна»

Во всех исследуемых фитоценозах Плавского радиоактивного пятна показатели КН в подземной фракции фитомассы <1, а для продуктивной надземной части фитомассы, а также для клубней картофеля составляют <0,1. Это говорит об общем низком биологическом потреблении ¹³⁷Cs и 137 Cs транслокации ИЗ корневой системы зеленую вегетирующую часть. Идея о подобной особенности распределения ³⁷Cs в растениях была высказана на основе экспериментов на гидропонных культурах (Staunton et al., 2003; Hampton et al., 2005; Dalius Kiponas, 2005) и впервые количественно оценена для условий установившихся многолетних циклов радионуклида биогеохимических на территории Плавского радиоактивного пятна.

Сравнительный анализ корневого потребления 137 *Cs и* 40 *K* Сравнительный анализ корневого потребления 137 Cs и 40 K, которые являются ближайшими химическими аналогами, выявил специфичность биогеохимических циклов радиоцезия. Несмотря на то, что проникновение элементов происходит по одним и тем же ионным каналам, мембранному транспорту калия (и, соответственно, 40 К) отдается предпочтение, а переход ¹³⁷Cs в растения может подавляться вплоть до достижения его критических концентраций в почве (Zhu et al., 2002; Giuffo and Belli, 2006). Так, во всех агрофитоценозах участка «Верхняя Локна», в почвах которых величины удельной активности 137 Cs и 40 К примерно равны, КН 40 К в 3-10 раз больше, чем КН ¹³⁷Сs (рис. 10). Особенно заметны различия в интенсивности корневого потребления ¹³⁷Cs и ⁴⁰К при их близком содержании в почвах в агрофитоценозе картофеля, который относиться К калиефильным сельскохозяйственным культурам. В природных луговых фитоценозах территории, в почвах которых значения удельной активности ¹³⁷Cs превосходят удельную активность 40К в 2-2,5 раза, очевидно, критический уровень соотношения элементов превышен, и КН ¹³⁷Cs превосходят КН ⁴⁰К в \sim 1,5 раза. Таким образом, если характеристики накопления природного $^{40}{\rm K}$ в растительности практически инвариантны от его содержания в почвах, инкорпорирование техногенного ¹³⁷Cs в фитомассу существенно зависит от уровня радиоактивного загрязнения территории.

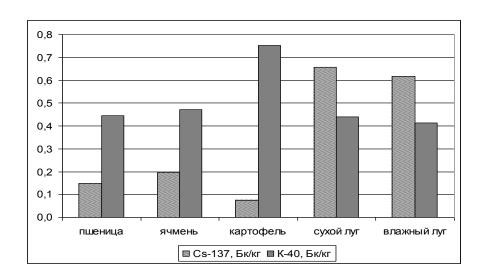
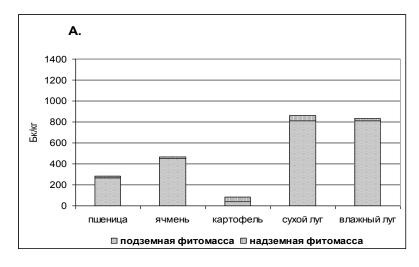



Рис. 10. Коэффициенты накопления $^{137}\mathrm{Cs}$ и $^{40}\mathrm{K}$ в общей фитомассе растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна»

Специфичность биогеохимических циклов радиоцезия, установившихся не территории Плавского радиоактивного пятна, еще более очевидна при сравнительном анализе распределения ¹³⁷Cs и ⁴⁰K по фракциям фитомассы (рис. 11). Перейдя из почвы в растения, ⁴⁰K активно транслоцируется в надземную фитомассу, в то время как ³⁷Cs депонируется в корнях и даже накапливаясь в них в относительно больших количествах (природные луговые фитоценозы), не переходит в зеленые вегетирующие части, что заставляет отвергнуть гипотезу о биогеохимической аналогии ¹³⁷Cs и ⁴⁰K.

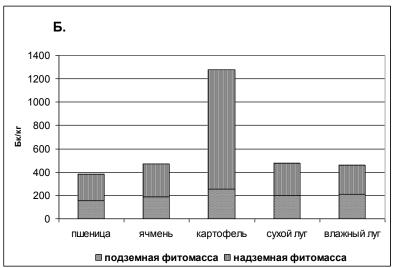


Рис. 11. Структура распределения величин удельной активности ¹³⁷Cs (A) и ⁴⁰K (Б) по фракциям надземной и подземной фитомассы растительности травянистых агроценозов и природных луговых фитоценозов участка «Верхняя Локна»

Глава VI. Баланс ¹³⁷Cs в системе «почва-растение» травянистых фитоценозов Плавского радиоактивного пятна

Радиоактивно загрязненные почвы Плавского радиоактивного пятна служат долговременным депо радиоцезия. В них прочно зафиксировано около 99,23 — 99,6 % пула радионуклида, накопленного в системе «почварастение» (таб. 6).

В агрофитоценозах исследуемой территории ежегодные выносы ¹³⁷Cs с урожаем ничтожно малые доли: меньше 0,004-0,005% у зерновых и 0,05% картофеля. В природных луговых фитоценозах с отмирающими частями растений в почву возвращается 0,005 % от общих запасов в системе «почварастение».

При минерализации органического вещества эта фракция приобретает высокую лабильность и может быть быстро реутилизирована растительностью лугов (замкнутые циклы). Таким образом, биогеохимические циклы ³⁷Cs в системе почва-растение» черноземных почв

характеризуются высокой степенью воспроизводства, что нарушается лишь естественным радиоактивным распадом.

Таблица 5. Величины удельной активности основных естественных радионуклидов и техногенного $^{137}\mathrm{Cs}$ в растительности травянистых

фитоценозов участка «Верхняя

Фитоценозы	Общие запасы в системе почва-растение, кБк/кг	Запасы в растении, кБк/кг	Запасы в почве, кБк/кг (%)	
	Агр	оценозы		
Пшеница	197,6	0,1 (0,04%)	197,5 (99,96%)	
Ячмень	272,0	0,1 (0,05%)	271,9 (99,95%)	
Картофель	177,3	0,1 (0,06%)	177,2 (99,94 %)	
Луговые фитоценозы				
суходольный луг	429,4	3,3 (0,77%)	426,1 (99,23%)	
влажный луг	391,8	3,0 (0,77%)	388,8 (99,23%)	

Глава VII. Экологическая оценка современных уровней накопления ¹³⁷Cs в почвах и продукции растениеводства Плавского радиоактивного пятна

Проведенные исследования показали, что почвы участка «Верхняя Локна», приуроченного к центру Плавского радиоактивного характеризуются повышенными показателями накопления техногенного ¹³⁷Cs в поверхностном 30-см слое, составляющими 5-12 Ки/км², что существенно превышает допустимую норму 1 Ки/км² и, согласно Закону от 15.05.1991 № 1244-1 «О социальной защите граждан, подвергшихся воздействию радиации, вследствие катастрофы на Чернобыльской АЭС», относит данную территорию к зоне проживания с правом на отселение, в которой производство растениеводческой продукции разрешено, но рекомендуется контроль содержания в ней радионуклидов. В то же время прямые оценки параметров накопления радиоцезия в составе в составе растительной продукции (зерне культурных злаков, картофеле и поедаемой части луговых трав) очень низкие и полностью соответствуют показателям допустимого 2.3.2.1078-01 установленных СанПиН «Гигиенические требования безопасности и пищевой ценности пищевых продуктов» (табл. 6).

Таблица 6. Оценка радиоэкологического качества растительной продукции на территории Плавского радиоактивного пятна (по допустимости величин удельной активности ¹³⁷Cs)

Растительная продукция	Накопление ¹³⁷ Cs,	Нормативные уровни,
	Бк/кг	Бк/кг
пшеница и ячмень	14-17	70
Картофель	39	600
многолетние травы	20-54	370

Кроме того, в настоящее время накоплен большой экспериментальный материал по мероприятиям, являющимся эффективными с точки зрения снижения перехода ¹³⁷Cs в сельскохозяйственную продукцию (Юдинцева, 1968; Моисеев, Тихомиров и др., 1986; Алексахин, 1992; Ратников, 1992; Овчаренко, 1995; Белоус, 2000; Орлов, 200; Санжарова и др., 2005 и др.). В этой связи правильный подбор культур сельскохозяйственного севооборота, агротехнических и агрохимических мероприятий, также содержания ¹³⁷Cs в почвах и растениях способны обеспечить приемлемое в радиоэкологическом отношении качество растениеводческой продукции, даже выращиваемой условиях сохраняющегося радиоактивного загрязнения земель.

ВЫВОДЫ

- Современные уровни удельной активности ¹³⁷Cs в почвах Плавского соответствуют поверхностного плотности радиоактивного пятна радиоактивного загрязнения почв ~200-430 Бк/м² (5-12 Ки/км²). При этом пространственное распределение ¹³⁷Cs в почвах малых водосборных пространств зоны радиоактивного загрязнения характеризуется высокой неоднородностью: в пахотных черноземах водораздельной поверхности и ее склонов величины аккумуляции радионуклида ~ в 2 раза меньше, чем в целинных почвах подножий склонов и речных пойм. Это подтверждает факт значимого вторичного перераспределения ¹³⁷Cs в постчернобыльский период массопереноса мелкозема эрозионного почв вследствие ландшафтов. этой связи геохимически сопряженных почвы рельефа позиций должны обязательным образом аккумулятивных включаться в систему радиоэкологического мониторинга радиоактивно пораженных земель.
- землях Плавского радиоактивного пятна величины удельной активности ¹³⁷Cs в растительности травянистых агроценозов и природных луговых фитоценозов ранжируются следующим образом: суходольный луг (злаково-разнотравный) > влажный луг (разнотравно-злаковый) > ячмень > пшеница и картофель. При этом характерные значения удельной активности ¹³⁷Cs в естественных луговых фитоценозах с многолетними травами на порядок больше, чем параметры накопления ¹³⁷Cs в агрофитоценозах яровых картофеля. этой растительная зерновых В связи продукция аккумулятивных позиций рельефа должна обязательным образом включаться в систему радиоэкологического мониторинга земель.
- 3. Общие параметры аккумуляции ¹³⁷Cs в фитомассе растительности травянистых агроценозов и природных луговых фитоценозов зависят от плотности радиоактивного загрязнения почв, состава растительного сообщества и биологических особенностей его доминантных видов (общей фитомассы, доли фитомассы корней в общей фитомассе, особенностей жизненного цикла растения и др.), что подтверждается достоверностью корреляционных отношений показателей на высоком уровне.

- Распределение величин удельной активности ¹³⁷Cs в надземной (стебли, листья, генеративные органы) и подземной (корни) фракциях фитомассы растительности травянистых фитоценозов, особенно природных лугов, характеризуется высокой неоднородностью – содержание радионуклида в корнях на порядок превышает уровень его концентрации в надземной части. Исключением является агрофитоценоз картофеля, в котором содержание ¹³⁷Cs в надземной (стебли и листья) и подземной (клубни=видоизмененный побег >> корни) фракциях фитомассы практически идентично. Контрастное ¹³⁷Сs между корнями и побегами свидетельствует распределение (барьерной) депонирующей роли корневой массы растений инкорпорации ¹³⁷Cs в фитомассу растений под влиянием градиента концентрации и подавлении транслокации радионуклида в вегетирующие зеленые части.
- 5. аналогами, характеризуются Являясь химическими особенностями биогеохимических циклов в травянистых различными ⁴⁰К селективно загрязненных территорий: фитоценозах радиоактивно поглощается растениями и активно транслоцируется в надземную фитомассу; ¹³⁷Cs поступает в корни растений с большей интенсивностью, чем ⁴⁰K, только при превышении критического уровня соотношения в почве 137 Cs/ 40 K в 2-2.5 раза, в растениях он депонируется в корнях и лишь в ограниченных количествах переходит в зеленые вегетирующие части. В целом ¹³⁷Cs характеризуется низким биологическим потреблением и отсутствием избирательного поглощения растениями из почвы.
- В почвах Плавского радиоактивного зафиксироаванно >99% пула ¹³⁷Cs, распределенного в системе «почва-растение». В природных луговых фитоценозах территории ~0,005 % запасов ¹³⁷Cs ежегодно возвращается в почву с отмирающими частями растений и может после минерализации быть быстро реутилизировано растениями. Ежегодный вынос ¹³⁷Cs с урожаем сельскохозяйственной продукции составляет менее 0,05%. Экологическая оценка современных уровней накопления ¹³⁷Cs в продукции растениеводства показала, что при сохранении почвами территории статуса радиоактивно загрязненных, уровни накопления ¹³⁷Cs в растительной продукции (зерне культурных злаков, картофеле и поедаемой части луговых трав) очень низкие соответствуют показателям допустимого полностью накопления, СанПиН 2.3.2.1078-01 «Гигиенические требования установленным безопасности и пищевой ценности пищевых продуктов».

Список работ, опубликованных по теме диссертации

Публикации в журналах, рекомендованных ВАК

1. Романцова Н.А. Естественные и техногенные радионуклиды в почвах Плавского радиоактивного пятна Тульской области. Агрохимический вестник № 6, 2012, С. 34-36.

Другие публикации

2. Романцова Н.А., Парамонова Т.А., Семенихин А.И. (2011) Особенности загрязнения почв Плавского радиоактивного пятна Тульской

- области цезием-137. // Актуальные проблемы экологии и природопользования. Материалы Всероссийской научно-практическая конференция 21-22 апреля 2011 г., Выпуск 13, г. Москва) С. 172 178.
- 3. Романцова Н.А., Парамонова Т.А., Матвеев Я.В., Семенихин А.И. (2012) Современные особенности накопления цезий-137 в различных фитоценозах Плавского радиоактивного пятна Тульской области. // Актуальные проблемы экологии и природопользования. Материалы Всероссийской научно-практическая конференция 18-20 апреля 2012 г., Выпуск 14, г. Москва) С. 206-214.

Сданные в печать работы:

- 4. Романцова Н.А., Парамонова Т.А. Накопление цезия-137 в растительности природных и агрогенных травянистых экосистем на радиоактивно загрязненной территории Тульской области. XXI век: итоги прошлого и проблемы настоящего плюс: Научно-методический журнал. − 2012. − № 02(06). Пенза: Изд-во Пенз. гос. технол. акад., 2012.
- 5. Романцова Н.А. Естественные и техногенные радионуклиды в почвах Плавского радиоактивного пятна Тульской области. XXI век: итоги прошлого и проблемы настоящего плюс: Научно-методический журнал. − 2012. № 02(06). Пенза: Изд-во Пенз. гос. технол. акад., 2012.
- 6. Парамонова Т.А., Романцова Н.А. Сравнительный анализ поступления цезия-137 и калия-40 в травянистую растительность радиоактивно загрязненной территории. Журнал Плодородие.