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Представлены результаты многолетнего мониторинга чистого экосистемного обмена, а также 
эмиссии диоксида углерода из почвы и мертвой древесины в лесной экосистеме, находящейся 
на стадии усыхания и распада елового древостоя в зоне охвата эколого-климатической станции 
“Лог Таежный” (национальный парк “Валдайский”, Новгородская область). Гибель и распад 
древостоя перестойных одновозрастных еловых насаждений, вызванные периодическими засуха-
ми, воздействием короеда-типографа и дереворазрушающих грибов, а также ветроломов, приво-
дит к сокращению первичной продукции и усилению деструкционной составляющей баланса СО2 
и его долговременному сдвигу в область выраженного источника диоксида углерода для атмосфе-
ры, тогда как прямое воздействие повышения температуры не приводит к такому эффекту.
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ВВЕДЕНИЕ
В настоящее время мониторинг динамики 

потоков парниковых газов и запасов углерода на-
земных экосистем является востребованной прак-
тической областью реализации международных 
и российских климатических решений в условиях 
продолжающегося современного глобального по-
тепления (Парижское …, 2015; Романовская, 2024; 
Романовская и др., 2023; IPCC …, 2022). 

Начиная с  конца XX в. проводятся интен-
сивные исследования углеродного баланса 
природных экосистем разных типов, развива-
ются глобальная (FluxNet) и региональные сети 
микрометеорологических станций, которые 
используют методы вихревой ковариации для 
измерения потоков CO2 и водяного пара меж-

ду биосферой и атмосферой, а существующие 
наборы данных охватывают уже более двух де-
сятилетий (Pastorello et al., 2020; Virkkala et al., 
2022). В России формируется национальная сеть 
RuFlux, хотя часть станций уже входит в между-
народную сеть FluxNet (Куричева и др., 2023). 
Результаты наблюдений c помощью математи-
ческих моделей помогут понять, как изменится 
баланс парниковых газов экосистем при клима-
тических изменениях и в результате различных 
нарушений природного и  антропогенного 
характера (Baldocchi, 2020). Большое внимание 
уделяется также измерениям почвенного дыха-
ния — важной функциональной характеристики 
экосистем, влияющей на баланс углерода в кон-
кретных условиях (Кудеяров, 2023; Курганова 
и др., 2024; Huang et al., 2020; Jian et al., 2021).
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Несмотря на значительный массив подобных 
наблюдений (Virkkala et  al., 2022), стациона-
ров, где проводятся многолетние комплексные 
исследования потоков парниковых газов (ПГ) 
и резервуаров углерода на обширной террито-
рии России, по-прежнему, крайне мало. После 
старта в  2022  г. важнейшего инновационного 
проекта государственного значения (ВИПГЗ) 
“Единая национальная система мониторинга 
климатически активных веществ”, утвержден-
ного Распоряжением Правительства Российской 
Федерации от 29 октября 2022 г. № 3240-р, ситуа-
ция существенно улучшилась. В настоящее время 
на территории РФ зарегистрированы 22 эколого-
климатические станции интенсивного уровня 
в рамках проекта ВИПГЗ (Куричева и др., 2023), 
но только некоторые из них, в том числе “Лог 
Таежный”, имеют многолетние ряды наблюде-
ний, включающие периоды аномальных клима-
тических явлений. Кроме того, в рамках того же 
проекта сформирована сеть измерений дыхания 
почвы, насчитывавшая летом 2023 г. 75 исследо-
вательских точек (Kurganova et al., 2024).

Эколого-климатическая станция “Лог Таеж-
ный” Валдайского филиала Государственного 
гидрологического института (ВФ ГГИ) Росгид-
ромета хорошо известна не  только в  России 
(Куричева и  др., 2023), но  и за  ее пределами 
(Jian et al., 2021). Помимо исследований водно-
го баланса таежных экосистем (Федоров, 1977), 
вот уже более 16  лет (с  2009  г. по  настоящее 
время) здесь проводятся ежегодные наблюдения 
за  пулами и  потоками углерода. В  частности 
оценивается чистый экосистемный обмен (NEE) 
СО2 и суммарное испарение (ET) методом тур-
булентных пульсаций (Алферов и др., 2017; За-
молодчиков и др., 2017; Karelin et al., 2020, 2021), 
детально исследуются сезонная и суточная из-
менчивость дыхания почвы (Карелин и др., 2017, 
2019; Karelin et al., 2014), эмиссия СО2 в ходе 
разложения валежника и сухостоя (Гитарский 
и др., 2020; Сафонов и др., 2012; Gitarskiy et al., 
2017; Mukhin et al., 2021), эмиссия СО2 из допол-
нительных точечных и спорадических таежных 
источников (Карелин и др., 2017, 2022; Karelin 
et  al., 2017b), углекислотный обмен хвои ели 
(Юзбеков и др., 2014, 2017), вклады корневого 
и микробного дыхания в почве (Karelin et al., 
2017a), изменения эмиссии СО2 из почвы в ходе 
восстановительной сукцессии на  супесчаных 
подзолистых почвах южной тайги (Люри и др., 
2013), применяется математическое моделиро-
вание на основе полевых измерений и метео-
данных (Суховеева, Карелин, 2022; Karelin et al., 
2014; Smagin and Karelin, 2021). Полученные 
результаты, включая данные по запасам угле-
рода в основных пулах, были обобщены в кол-
лективной монографии (Алферов и др., 2017). 

Многолетний ряд наблюдений и разнообразие 
полученных данных позволяют проводить срав-
нение ежегодно получаемой новой информации 
с полученной здесь ранее.

В 2024  г. по  данным ВМО был впервые 
в  инструментальной метеорологической ис-
тории превзойден обозначенный в  междуна-
родных документах порог 1.5°С по сравнению 
с  доиндустриальным уровнем температуры 
приземного слоя атмосферы1. Для территории 
России этот год оказался на втором месте после 
2020 г. по значениям средней годовой темпера-
туре воздуха (Доклад …, 2025), что наблюдалось 
и на Валдайской возвышенности, судя по дан-
ным метеостанции ВФ ГГИ за  весь период 
наблюдений (+6.5°С в 2024; +6.8°С в 2020 г.). 
Цель настоящего исследования  — выявить 
влияние усыхания и распада елового древостоя 
в наиболее выраженный период современного 
потепления на обмен СО2, фиксируемый в зоне 
охвата эколого-климатической станции “Лог 
Таежный”.

РАЙОН ИССЛЕДОВАНИЙ
Эколого-климатическая станция “Лог Таеж-

ный” расположена на юго-востоке Валдайской 
возвышенности (Валдайский район Новго-
родской области, координаты 57°57.8ʹ с.ш.,  
33°20.3ʹ  в.д.) в  пределах конечно-моренного 
ландшафта последней (Осташковской) стадии 
Валдайского оледенения. Территория отно-
сится к  району хвойно-широколиственных 
(смешанных) лесов европейской части России 
(Об утверждении …, 2014). По  геоботаниче-
скому районированию территория относится 
к Валдайскому геоботаническому району, для 
которого характерно преобладание осиновых, 
березовых и еловых дубравно-травяных лесов 
с примесью широколиственных пород (Жеку-
лин, Челпанова, 1975). Преобладание в недав-
нем прошлом еловых лесов связано с историей 
природопользования и особенностями ведения 
лесного хозяйства, нацеленного на получение 
хозяйственно ценной древесины хвойных пород. 
В  то же время в  лесном массиве сохранились 
широколиственные виды деревьев (Quercus 
robur L., Fraxinus excelsior L., Acer platanoides L., 
Tilia cordata Mill.), однако их участие в составе 
древостоев единичное. Отличительной осо-
бенностью древостоев в  зоне охвата эколого-
климатической станции является преобладание 
одновозрастных перестойных насаждений 
(по  данным лесоустройства  — 110–120  лет 
1 https://wmo.int/ru/news/media-centre/vmo-podtverzhdaet-
chto-2024-god-stanet-samym-teplym-godom-v-istorii-
nablyudeniy-primerno-na-155-degc
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по состоянию на 2009 г.), что свидетельствует 
о вторичном происхождении лесов, сформиро-
вавшихся после нарушений (рубки, пожары, 
частичная распашка) (Алферов и др., 2017).

Климат района  — умеренно континенталь-
ный, умеренно холодный, гумидный. По кли-
матической классификации (Алисов, 1956) 
район исследования относится к  атлантико-
континентальной лесной области умеренного 
пояса. По  данным метеостанции “Валдай” 
за предыдущий период климатической нормы 
(1961–1990 гг.) среднегодовая температура воз-
духа составляла +3.8 ± 0.2°С, средняя темпера-
тура июля +16.6 ± 0.3°С, января –10.0 ± 0.9°С, 
среднегодовое количество осадков 719 ± 20 мм 
с отчетливо выраженным летним максимумом. 
В последующий период (1990–2024 гг.) увеличи-
лись среднегодовая температура (+5.1 ± 0.1°С), 
средняя температура  июля (+18.0 ± 0.4°С) 
и  средняя температура  января (–6.9 ± 0.5°С). 
Увеличилось и среднемноголетнее количество 
осадков до  799 ± 20  мм. Среднегодовая тем-
пература показывает устойчивый рост за весь 
период имеющихся наблюдений на метеостан-
ции Валдайского филиала ГГИ (рис. 1). Сумма 
осадков за  год имеет слабый положительный 
тренд в сочетании с большой межгодовой из-
менчивостью, однако существенное влияние 
на  ельники оказывают периодические засухи 
в летний период, которые могут случаться даже 
в годы с высокими значениями годовых сумм 
осадков. 

Объектом исследования были старовозраст-
ные мелкотравно-зеленомошные ельники с до-
минированием ели европейской (Picea abies (L.)  
Karst.) и  небольшим участием сосны (Pinus 

sylvestris L.) и березы (Betula pendula Roth.) (Ал-
феров и др., 2017; Заугольнова, Морозова, 2006). 
Возраст древостоев в 2019 г. составлял 120 лет. 
Рельеф  — конечно-моренный, почвы  — дер-
ново-подзолистые, имеющие следы распашки 
в прошлом (Алферов и др., 2017). После засух 
2010 и 2021  гг. произошло усыхание и распад 
еловых древостоев. В  2024  г. живых деревьев 
в первом ярусе практически не осталось.

МЕТОДЫ
Оценка состояния древостоев выполнялась 

на  постоянных пробных площадях размером 
0.1 га, заложенных в 2009 г. на пологих вершинах 
холмов. На  пробных площадях периодически 
проводилась таксация древостоя с  определе-
нием породы, диаметра ствола на высоте 1.3 м, 
высоты и состояния деревьев, учитывался под-
рост и подлесок. Запасы фитомассы древостоя, 
подроста и  подлеска рассчитывали на  основе 
аллометрических уравнений (Уткин и др., 1996). 
При пересчете древесной фитомассы в органи-
ческий углерод использован коэффициент 0.5. 
Запасы надземной фитомассы живого напоч-
венного покрова определялись методом укосов 
на площадках 0.25 м2 в 5-кратной повторности, 
далее пробы высушивали до абсолютно сухого 
состояния и взвешивали, при пересчете в угле-
род использовали коэффициент 0.45. 

Измерения эмиссии диоксида углерода 
из  почвы (дыхание почвы) осуществляли за-
крытым камерным методом по  изменению 
концентрации CO2 за  3 мин в  непрозрачных 
цилиндрических камерах из поливинилхлорида 
объемом от 1.2 до 1.5 л и площадью основания 
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Рис. 1. Динамика среднегодовой температуры и суммы осадков за год по данным метеостанции Валдайского филиала 
Государственного гидрологического института.
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90 см2, вкопанных в почву на глубину 3–4 см 
в постоянных точках. Растения в камерах уда-
ляли. Основания камер вне измерений были 
постоянно открыты. Оценки потоков проводили 
приборами, выполненными на  основе порта-
тивного инфракрасного СО2-газоанализатора 
AZ 7752 (AZ Instrument Corp., Тайвань). Эти 
приборы периодически тестировали калибро-
вочными газовыми смесями с концентрациями 
СО2 400 и 600 ppm. Измерения дыхания почвы 
выполнялись на постоянной трансекте длиной 
500 м, проходящей через всю зону охвата (фут-
принт2) и включающей 50 оснований для камер, 
установленных через каждые 10 м в 2017 г. 

Кроме того, аналогичные измерения прово-
дились на постоянных площадках, заложенных 
в  различных биотопах (ельник, окна распада 
елового древостоя). На каждой площадке было 
установлено 10–20 камер.  Дополнительно 
с мая 2021 г. измерениями были охвачены по-
верхности пней, образовавшихся в результате 
ветроломов елей (10 пней елей разной высоты, 
диаметра и  различной степени разложения), 
где камеры устанавливаются только во время 
измерений. В последнем случае герметичность 
камер по отношению к поверхности древесины 
обеспечивалась специальным гигроскопическим 
материалом, насыщаемым перед измерениями 
водой; в период с отрицательными температура-
ми, вместо воды использовали жидкость-анти-
фриз (Курганова и др., 2024). В 2024 г. впервые 
удалось провести полный годовой цикл измере-
ний почвенной эмиссии СО2 с частотой дважды 
в месяц, что повышает значимость полученных 
оценок. С января по декабрь 2024 г. на всех вы-
шеперечисленных площадках и трансектах было 
проведено 24 сезонных цикла по 100 единичных 
замеров в каждом. По общему количеству изме-
рений и внутригодовому охвату 2024 г. является 
наиболее подробно исследованным годом в от-
ношении наземной эмиссии СО2 за весь много-
летний период наблюдений на станции.

Оценка чистого экосистемного обмена 
диоксида углерода в  исследуемой экосистеме 
проводится методом турбулентных пульсаций 
(МТП) на основе измерения его концентрации 
и  вертикальной компоненты скорости ветра 
с  применением установки Close Path Eddy 
Covariance system (CPEC200, Campbell Sci. Inc., 
США), установленного на 42 м мачте. Приме-
2 Футпринт  — общепринятый в  настоящее время термин 
из области прямой инструментальной оценки малых газовых 
потоков в  приземном слое атмосферы с  помощью микро-
метеорологических методов. Он обозначает зону охвата, то 
есть площадь изучаемой экосистемы, которую “видят” при-
боры, и представляет собой участок с наветренной стороны, 
с которого к приборам, расположенным на вышке, перено-
сится газовый поток (Бурба и др., 2016).

няемый метод дает возможность определить ко-
личество СО2, которое было перенесено за еди-
ницу времени с единицы площади экосистемы 
в атмосферу или же из атмосферы в экосистему. 
В настоящее время МТП является одним из наи-
более точных и  теоретически обоснованных 
методов исследования масштабного газообмена 
между экосистемами и атмосферой (Бурба и др., 
2016; Куричева и др., 2023). В состав пульсаци-
онной установки CPEC200 входят: осадкомер 
TE525 (Texas Electronics, США; на высоте 46 м 
над поверхностью почвы(ПП); газоанализатор 
закрытого типа EC155 (Campbell Sci. Inc., США; 
44.5 м над ПП); трехосевой акустический анемо-
метр CSAT3A (Campbell Sci. Inc., США; 44.5 м 
над ПП); сенсор теплового баланса в приземном 
слое атмосферы NET-радиометр NR-LITE (Kipp 
& Zonen  B.V., Нидерланды; 44.5  м над ПП); 
квантовый сенсор входящей фотоактивной ра-
диации LI190SB (Li-Cor Inc., США; 44.5 м над 
ПП); сенсор температуры и влажности воздуха 
HMP45C (Vaisala Inc., Финляндия; 44.5 м над 
ПП); семь сенсоров температуры воздуха T107C 
(Campbell Sci. Inc., США; 40; 35.5; 26.5; 17.5; 
8.5; 2 и 0.25 м над ПП); два сенсора темпера-
туры почвы TCAV (Campbell Sci. Inc., США; 
2–6 см под ПП); два сенсора влажности почвы 
CS616 (Campbell Sci. Inc., США; 4 см под ПП); 
три сенсора теплового баланса в почве HFP01 
(Hukseflux Thermal Sensors, Нидерланды; 8 см 
под ПП). Для калибровки газоанализатора 
EC155 использовались поверочные газовые 
смеси первого разряда ООО “МОНИТОРИНГ” 
(Санкт-Петербург) и азот высокой частоты мар-
ки 6.0 ООО “НИИ КМ” (Москва). Все калиб-
ровочные образцы проходили дополнительную 
поверку в ФГБУ ГГО им. А.И. Воейкова (Санкт- 
Петербург) в соответствии с вторичными газо-
выми стандартами центральной калибровочной 
лаборатории (CCL WMO). Концентрация CO2 
в образцах варьировала от 400 до 450 ppm. Для 
управления измерениями и  регистрации дан-
ных служит логгер CR3000 (Campbell Sci. Inc., 
США), к  которому подключены все сенсоры. 
Логгер опрашивает сенсоры с частотой 10 Гц, 
синхронизирует измерения и сохраняет данные 
в виде таблиц. В CR3000 загружена программа 
работы установки, автоматической первичной 
обработки и  усреднения данных, написанная 
на  языке CRBasic (Campbell Sci. Inc., США), 
на котором работают все логгеры производите-
ля. Используемая программа CRBasic написана 
специалистами Campbell Sci. Inc и  защищена 
авторскими правами. На  большинстве эко-
лого-климатических станций, оснащенных 
комплексами Li-Cor или Campbell Sci., дан-
ные получают в первичном виде 10 или 20 Гц 
и  обрабатывают их  в программе EddyPro или 



762	 Шилкин и др.

ИЗВЕСТИЯ РАН. СЕРИЯ ГЕОГРАФИЧЕСКАЯ  том 89  № 5  2025

EasyFlux соответственно. Используемая нами 
CRBasic программа включает все необходимые 
алгоритмы обработки данных идентичные тем, 
что содержатся в вышеупомянутой программе. 
В том числе сюда входит отбраковка первичных 
данных потока CO2 по флагам качества, когда 
фиксируется слабый сигнал сенсора, например, 
из-за осадков, и  по динамической скорости 
ветра U* (формула 1), когда отсутствует турбу-
лентность. Нижний порог U* для исследуемой 
системы выбран 0.33  м с–1; значения потока 
CO2 соответствующие меньшим значениям U* 
удаляются из первичных данных 10 Гц. После 
автоматической фильтрации данные усредняют-
ся за интервал 30 мин и сохраняются логгером. 
Первичные неотфильтрованные данные также 
остаются доступными.

	 ( ) ( )= +
22* 4U cov U U cov U U ,x z y z 	 (1)

где Ux, Uy и Uz — три компоненты скорости ветра.

Далее проводилась дополнительная фильтра-
ция данных по  значениям плотности потока 
фотоактивной радиации PAR в ночное время. 
Для этого удалялись отрицательные стоковые 
значения потока CO2 при значениях PAR мень-
ших 10 мкМоль с–1 м–2.

Последним этапом фильтрации является 
удаление статистически незначимых выбросов. 
Функции распределения большинства измеря-
емых параметров не являются симметричными, 
для их описания больше походит логнормальная 
аппроксимация, а не часто используемая нор-
мальная. Для фильтрации данных ряд склады-
вался в двумерную матрицу “А” размерностью 
m × (48 ∙ 31), где “m” — количество строк мати-
цы равное количеству месяцев за исследуемый 
период, 48  — количество 30-мин измерений 
за сутки, 31 — максимальное количество дней 
в месяце. В пределах каждой строки и каждого 
столбца полученной матрицы “А” выборка 
приближается к нормальному распределению, 
поэтому к ней уже можно применять стандарт-
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Рис. 2. Фильтрация на примере данных потока диоксида углерода (фрагмент): (а) исходные данные, (б) отфильтро-
ванные данные.
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ные статистические операторы. Далее запускал-
ся цикл по строкам матрицы “А”, и из каждой 
строки убирался линейный тренд, после чего 
в ней рассчитывалось стандартное отклонение 
(STD). Из полученной выборки удалялись зна-
чения, выходившие за  пределы четырех STD. 
После завершения цикла по строкам матрицы 
“А”, запускался цикл по ее столбцам, и в них 
выполнялись те же операции. Чередование 
циклов по  столбцам и  строкам матрицы “А” 
проводилось до тех пор, пока количество про-
пусков в ней не становилось постоянным, т.е. 
пока не удалялись все выбросы. После фильтра-
ции матрица “А” обратно раскладывалась 
в  отфильтрованный ряд. В  качестве примера 
на рис. 2 показаны данные измерений потока 
СO2 (Fc) до и после процедуры фильтрации.

Восстановление пропусков также проходило 
в двумерной матрице с последовательным из-
менением ее формата: [d × 48]; [m × (48 ∙ 31)];  
[y × (48 ∙ 366)], где d — количество дней изме-
рений, m  — количество месяцев измерений, 
y  — количество лет измерений. Пропуски за-
полнялись трехмерной кубической интерполя-
цией внутри полученной матрицы с изменением 
формата для решения краевой задачи. После 
восстановления пробелов матрица обратно рас-
кладывалась в ряд данных (рис. 3).

Расчет зоны охвата пульсационных вышек 
реализован в  некоторых стандартных про-
граммах обработки пульсационных данных 

(EddyPro, FREddyPro), кроме того, существует 
проект Kljun footprint model (Kljun et al., 2004), 
позволяющий осуществить оценку зоны охвата 
в интернет-приложении. Именно этот вариант 
был использован в настоящей работе. Был под-
готовлен файл Excel, строки которого представ-
лены получасовыми значениями параметров, 
часть которых непосредственно продуцирует 
пульсационная установка, а часть характеризует 
установку и объект исследования (высота раз-
мещения сенсоров и высота древостоя). Кроме 
того, в состав параметров входит масштаб Мо-
нина-Обухова “L” (имеет размерность длины), 
который может быть рассчитан на основе ряда 
параметров пульсационной установки. Процеду-
ра расчета “L” была реализована в пакете Excel. 
Исходными данными послужили результаты 
пульсационного мониторинга, проведенного 
в период с мая 2010 по август 2011 г. Для каждой 
валидной получасовой записи был проведен 
расчет “L”. Далее был сформирован тексто-
вый массив стандартного формата и загружен 
на портал Kljun footprint model. Затем с портала 
был получен ряд файлов, представляющих зону 
охвата в виде растровых изображений и вектор-
ных файлов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Усыхание ели спровоцировала летняя засуха 

2010 г. По данным метеостанции среднемесячная 
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Рис. 3. Восстановление пропусков на примере данных потока диоксида углерода (фрагмент).
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температура июля в 2010 г. составила +24.1°С 
при сумме осадков всего лишь 6.1 мм. Интен-
сивная гибель ели произошла в  2011  г. в  ре-
зультате атаки на ослабленные старые деревья 
короеда-типографа (Ips typographus L.) (Алферов 
и др., 2017; Karelin et al., 2020). В дальнейшем 

мертвые ели стали выпадать из яруса древостоя 
в  результате ветроломов и  ветровалов. После 
засухи 2021 г. массовое усыхание продолжилось 
в 2022 г. и привело к полной гибели старых елей 
в 2023 г. (рис. 4а). В 2024 г. сухостой ели подверг-
ся массовым ветроломам в связи с поражением 

Рис. 4. Массовая гибель елового древостоя в зоне охвата эколого-климатической станции “Лог Таежный” (Вал-
дайский район, Новгородская область): (а) август 2023 г.; (б) ноябрь 2024 г.; (в) участок массового ветролома (ноябрь 
2024 г.); (г) основание ствола ели после ветролома с плодовыми телами Fomitopsis pinicola (ноябрь 2024 г.).
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основания стволов дереворазрушающими гриба-
ми-сапрофитами (преимущественно Fomitopsis 
pinicola (Sw.) P. Karst.) (рис. 4б, в, г).

В 2024  г. живых елей в  составе древостоя 
практически не осталось, большая часть дере-
вьев представляла собой валежник, а меньшая 
часть — сухостой. В результате ветроломов оста-
ются пни высотой 1–5 м, так как в ходе падения 
стволы погибших елей чаще ломаются (см. 
рис. 4г, д), чем вырываются из почвы с корнями 
(Karelin et al., 2017b, 2020). Последнее важно для 
общего углеродного баланса рассматриваемой 
экосистемы, поскольку известно, что остатки 
сухостоя (пни) и почва в их основаниях служат 
достаточно мощными дополнительными источ-
никами СО2 (Карелин и др., 2022; Karelin et al., 
2021). Такая ситуация наблюдалась в  2024  г. 
практически по  всей площади зоны охвата 
(футпринта) пульсационного оборудования 
CPEC200, в  радиусе 400–500  м от  основания 
мачты. При этом на участках с полным распа-
дом древостоя ели активно развивается подрост 
лиственных деревьев (Sorbus aucuparia L., Salix 
caprea L., Betula pendula Roth, B. pubescens Ehrh., 
Populus tremula L.) с  примесью ели, а  также 
травяной покров с  доминированием вейника 
лесного (Calamagrostis arundinacea (L.) Roth), 
орляка (Pteridium aquilinum (L.) Kuhn), причем 
орляк часто блокирует естественное лесовосста-
новление. Ель успешно возобновляется под по-
логом лиственных деревьев на перегнивающих 
стволах ели.

По данным дистанционного зондирования 
участка наблюдений по космическим снимкам 
(общая площадь 0.785 км2), в 2009 г. ослаблен-

ными, усыхающими и погибшими елями было 
занято всего 8% площади, тогда как в 2015 г. они 
составляли уже почти 30%. С 2015 г. смертность 
деревьев замедлилась, а погибшие деревья нача-
ли выпадать из древостоя. В 2022 г. произошло 
массовое усыхание оставшегося елового дре-
востоя (около 20% площади). В 2024 г. большая 
часть сухих деревьев ели выпала в  результате 
ветроломов (рис. 5). 

В связи с этим за период 2009–2024 гг. запа-
сы крупного древесного дебриса увеличились 
в 6.6 раз, при этом большая часть перешла в ва-
лежник. За тот же период запас живых деревьев 
на пробных участках сократился с 572 до 8 м3 га–1 
(рис. 6).

Оценки запасов углерода в пулах биомассы 
и мортмассы показали, что участки с распада-
ющимся еловым древостоем характеризуются 
потерями углерода, которые в основном связаны 
с разложением значительного объема мертвой 
древесины (табл. 1). За  период 2009–2024  гг. 
запасы углерода сократились на  59.6 тС га–1. 
За рассматриваемый период запасы углерода со-
кратились в биомассе древостоя и увеличились 
в  мертвой древесине (сухостой и  валежник). 
В 2024 г. наблюдалось увеличение накопления 
углерода в биомассе подроста в 7.8 раз, в био-
массе живого напочвенного покрова — в 3.8 раза 
по сравнению с 2009 г.

Эмиссия СО2 из  почвы. Рассмотрим показа-
тели 2024 г. по данным наземных наблюдений 
почвенной эмиссии СО2. Прежде всего, следует 
отметить, что внешних различий между изна-
чально выбранными для мониторинга участками 
елового леса с распадом древостоя и участками 

Рис. 5. Спутниковые снимки исследуемого ландшафта 2011 г. и 2024 г. Красные изолинии отражают футпринт по со-
стоянию на 2011 г. (с шагом 10% от площади зоны), внешний контур ограничивает 90% площади футпринта (длин-
ная ось внешнего контура составляет около 1200 м, короткая — 800 м). 
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с сохранившимися деревьями, в рассматрива-
емый период больше не наблюдается, поэтому 
эти данные в 2024 г. были объединены. Заметим, 
что постоянные измерения на трансекте 500 м, 
которые были положены в основу этого срав-
нения, проводятся в  точках, расположенных 
на удалении 1 м и более от сухих стволов или 
пней елей, поэтому в данном случае отсутствует 
влияние дополнительных источников эмис-
сии от оснований или с поверхности сухостоя 
и рассматривается эмиссия СО2 с поверхности 
почвы между стволами деревьев.

Для корректной оценки общего тренда дина-
мики почвенной эмиссии за многолетний пери-
од необходимо использовать только сравнимые 
данные (апрель–октябрь), то есть в  нашем 

случае за  вегетационные сезоны, поскольку 
в первые годы мониторинга не проводились из-
мерения в зимний период. Как показал анализ 
метеоданных (рис. 7), если рассматривать весь 
период наблюдений (2009–2024), отмечается 
увеличение среднегодовой температуры воздуха, 
в основном, за счет зимнего периода. Однако 
за  последний период (2014–2024) несмотря 
на то, что в 2021–2024 гг. наблюдается монотон-
ный рост температуры воздуха, ее тренд почти 
не  выражен. На  этом фоне средний уровень 
эмиссии за бесснежный сезон (см. рис. 7) де-
монстрирует за  последний 10-летний период 
небольшую (незначимую) положительную 
связь со среднегодовой температурой (rp = +0.3, 
р > 0.05) и слабо выраженный отрицательный 
тренд (около 2% в год). На том же рисунке хо-
рошо заметен процесс постепенного сближения 
кривых изменения эмиссии в окнах распада дре-
востоя и на участках леса с еще сохранившимся 
древостоем по мере его полного распада в 2023–
2024 гг. Вероятно, небольшое снижение эмис-
сии в этот период определяется не погодными 
факторами (какого-либо тренда по количеству 
осадков также не  наблюдается), а  процессом 
гибели древостоя, хотя в целом 2024 г. оказался 
аномально теплым и  несколько более сухим 
(температуры воздуха: +6.5°С, сумма осадков: 
583 мм; для сравнения многолетняя климатиче-
ская норма за 1991–2020 гг. составляет +5.0°С 
и 692 мм соответственно). Заметим, что в дан-
ном случае не  учтен дополнительный вклад 
эмиссии СО2 из приствольных зон сухостоя и с 
поверхности пней, а также от валежа ели.

Применение модели Райха-Хашимото, ранее 
параметризованной нами по полевым наблюде-
ниям эмиссии СО2 за 2014–2021 гг. (Карелин, 

Рис. 6. Многолетняя динамика запасов живых деревьев, сухостоя и валежника в старовозрастном еловом лесу с вы-
раженным распадом древостоя.

Таблица 1. Запасы углерода в старовозрастном еловом 
лесу до и после распада древостоя

Резервуар углерода
Запасы углерода, т С га–1

2009 г. 2024 г.

Биомасса древостоя 
(живые деревья) 170.9 ± 15.4 2.9 ± 0.3

Мертвая древесина 
(сухостой и валежник) 40.3 ± 6.7 142.1 ± 21.3

Биомасса подроста 0.8 ± 0.1 6.2 ± 0.8

Биомасса трав  
и кустарничков 0.4 ± 0.1 1.5 ± 0.2

Биомасса мхов 0.2 ± 0.1 0.3 ± 0.1

Итого 212.6 ± 16.8 153.0 ± 21.3

Примечание: приведены средние величины и  их стан-
дартные ошибки.
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Суховеева, 2022), приводит к  существенному 
улучшению ее качества по сравнению с натур-
ными наблюдениями за 2024 г. (рис. 8). Так, если 
раньше показатель несоответствия Тейла (меня-
ется от 0 до 1: чем он меньше, тем соответствие 
модели натурным данным лучше) для участков 
с нарушенным древостоем был равен 0.234, для 
леса с незатронутым распадом древостоем 0.231, 
то в 2024 г. он оказался 0.166 и 0.182 соответ-
ственно. Коэффициенты корреляции по тем же 
массивам данных также существенно улучши-
лись (с rp = +0.67 до rp = +0.90). 

Если оценивать по тем же полевым данным 
(см. рис. 8) значение суммарной эмиссии СО2 
за год по формуле трапеций по всем наблюдени-
ям за 2024 г., то получим 746 ± 41 г С·м–2 год–1. 
При этом модель Райха-Хашимото в  ее наи-
лучшем приближении, приводит к очень близ-
кому значению: 744  г  С·м–2  год–1. Последняя, 
почти совпадающая с полевой, оценка годовой 
эмиссии была получена с  помощью модели, 
параметризованной для участков леса, которые 
подверглись распаду древостоя за  последние 
годы, тогда как аналогичная оценка с помощью 
той же модели, параметризованной по участкам, 
где древостой распался на  7–11  лет раньше, 
дала завышенный результат (см. рис. 8 “вывал”:  
835 г С·м–2 год–1). Это свидетельствует об очень 
динамичном изменении дыхания почвы в эко-
системе елового леса, связанном с гибелью дре-
востоя под воздействием засух и атак ксилофа-

гов. За рассматриваемый период дыхание почвы 
несколько снизилось, что вероятно связано, как 
с уменьшением вклада дыхания корней, так и с 
подавлением микробной (прежде всего, ризо-
сферной) активности в почве.

Полученные оценки дыхания почвы сопоста-
вимы с ранее опубликованными результатами, 
характерными для лесных экосистем уме-
ренного пояса. Например, в  обзорной работе 
И.Н. Кургановой с соавторами (2024) средние 
значения дыхания почв варьировали от  3.75  
до 4.39 г С·м–² сут–¹ для хвойных, смешанных 
и  лиственных лесов России с  разным типом 
почв и влажностью, что близко к полученным 
нами диапазонам. По данным многолетних на-
блюдений в лесах умеренной зоны северо-вос-
тока США в среднем значение дыхания почвы 
варьировало от 695 до 768 г С·м–² год–¹ (Giasson 
et al., 2013). 

Полученные значения эмиссии CO₂ из почвы 
в 2024 г. (746 ± 41 г С·м–²·год–¹) превышают сред-
ние показатели для ненарушенных экосистем. 
Например, в южно-таежных ельниках Республи-
ки Коми (Россия) почвенное дыхание варьирует 
в пределах 161–407 г С·м–²·год–¹ (Osipov et al., 
2018), тогда как в лесных экосистемах Валдая 
после гибели древостоя аналогичные величины 
достигают 700–800 г С·м–²·год–¹ (Karelin et al., 
2021). Глобальные обзоры (Hamdi et al., 2013; 
Jian et al., 2021) показывают, что повышенные 
значения почвенного дыхания связаны с  до-
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ступностью органического субстрата и актив-
ностью гетеротрофных микроорганизмов, что 
согласуется с нашими данными для нарушенных 
лесов с  обилием мертвой древесины. Однако 
в отличие от работ В.А. Мухина с соавторами 
(Mukhin et al., 2021), где эмиссия от валежника 
доминирует даже в интактных лесах, в нашем 
исследовании ее вклад (54.5%) стал критичным 
только после массового распада вторичных ело-
вых древостоев.

Эмиссия СО2, связанная с формированием су-
хостоя. Оценив современный уровень годового 
дыхания почвы на участках, удаленных от сухо-
стоя, определим вклад эмиссии СО2 от сухостоя. 
С 2014 г. на площадке с полностью погибшим 
древостоем елей, где сухостой сейчас сохранился 
в виде пней различной высоты, продолжаются 
наблюдения за эмиссией СО2 из почвы в осно-
ваниях сухих стволов елей (10 точек), где ранее 
нами были обнаружены дополнительные ис-
точники углекислого газа. В 2023–2024 гг. сухо-
стой на участке наблюдений полностью выпал 
в результате ветроломов, после которых сохра-
нились пни, по высоте не превышающие 5 м. 
С 2014 по 2024 г. соотношение эмиссии в осно-
ваниях сухостойных стволов елей и  из почвы 
между ними удерживалось в пределах 2–3.5 раза 
(выше под сухостоем, в среднем, в 3 раза), почти 
не меняясь. В 2024 г. этот показатель был близок 

к среднему значению за несколько лет. В целом 
эффект усиления эмиссии в основаниях сухих 
стволов и пней елей остается столь же выражен-
ным, как и в 2014 г., в самом начале наблюде-
ний. За 10-летний период корреляция величин 
эмиссии между этими микробиотопами остается 
сильной и положительной (rр = +0.86, p < 0.001). 
Судя по длительности наблюдаемого эффекта, 
представляется более вероятным, что в настоя-
щее время это связано не только с активностью 
биоты, разлагающей древесину, корни и хвой-
ный опад, но и с облегчением транспорта СО2 
из почвы в пристволовых зонах. Заметим, что 
по данным на этой площадке наблюдений, так 
же, как и на 500 м трансекте, наблюдается тренд 
к снижению уровня дыхания за 10 лет монито-
ринга, хотя за последние три года отмечается 
прирост эмиссии из почвы под сухостоем.

Второй вид так называемых “горячих то-
чек”3  — это значительная эмиссия СО2 с  по-
верхности обломков сухостоя. Начиная с  мая 
2021 г. на поверхности пней различной высоты, 
диаметра и степени разложения были проведены 
измерения эмиссии СО2 на десяти постоянных 
3 “Горячие точки” (hot spots) — обычно небольшие по пло-
щади участки почвы, которые служат временными или дли-
тельными значительно более мощными источниками СО2, 
по сравнению с фоновым значением почвенной эмиссии. 
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Рис. 8. Сравнение внутригодовой эмиссии СО2 из почвы на эколого-климатической станции “Лог Таежный” по на-
турным наблюдениям 2024 г. и по параметризованной на полевых данных модели Райха-Хашимото для участков леса 
с различной историей: “вывал” — участки, где древостой распался на 7–11 лет раньше, “лес” — участки, которые 
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стандартные ошибки.
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точках. Как уже отмечалось, чаще встречается 
вариант, когда ель не вываливается с корнем, 
а обламывается на небольшой высоте, формируя 
пень или остолоп. Нами была обнаружена по-
ложительная корреляционная связь (rp = +0.71,  
p < 0.05) между высотой сухостоя (пня) и скоро-
стью эмиссии СО2 с его обломочной поверхно-
сти, что свидетельствует о том, что этот эффект 
может быть связан, как с освоением грибами- 
ксилотрофами бо`льших запасов мортмассы ство-
ловой древесины, так и с усилением транспорта 
газа через вертикальные трещины в  мертвой 
древесине (так называемый эффект “каминной 
трубы”). 

Связи между степенью разложения древесины 
пней и эмиссией с их поверхности установить 
не  удалось. По  наиболее подробным за  весь 
период наблюдений данным за 2024 г. (рис. 9), 
величина этого дополнительного локального 
источника в среднем в 7 раз превышает сред-
ний уровень дыхания почвы (в январе в 0.6 раз, 
в  мае  — в  13.3 раза), причем этот источник 
фиксируется и  в снежный период, с  ноября 
по апрель, лишь в январе значимо не отлича-
ясь от фона почвенного дыхания. Корреляции 
между всеми потоками на рис. 9 являются вы-
сокими и положительными (rp = +0.9, p < 0.001). 
Корреляция с температурой воздуха в момент 
измерений за год также была высокой и поло-
жительной и наблюдалась для всех оцениваемых 
здесь видов эмиссионных потоков (средний 
rp = +0.86, p < 0.001).

Если рассчитать относительную площадь 
подобных зон повышенной эмиссии СО2 

в основаниях сухостоя елей в зоне футпринта, 
то эта величина составляет, по нашим оценкам, 
от 7 до 10% пробных площадей (n = 10). Пло-
щадь стволов на высоте обломочной поверхно-
сти, по тем же оценкам, составляет от 3 до 4% 
(n = 10). В  этом случае суммарный годовой 
вклад эмиссии со стороны сухостоя (включая 
зоны вокруг его оснований) можно оценить как  
305–376 г С·м–2 год–1.

Потери СО2 при разложении древесного валежа. 
Наиболее простым косвенным способом оценки 
вклада дополнительной эмиссии диоксида угле-
рода со стороны валежа является оценка по по-
тере массы крупных древесных остатков. Для 
этого надо оценить удельные запасы углерода 
на пробных площадях и применить к ним из-
вестную константу разложения для данной по-
роды (Harmon et al., 2000). Для ели европейской 
в зоне распространения российской тайги такие 
коэффициенты достаточно хорошо известны 
и могут быть оценены, в среднем, как 0.070 год–1  
(Khanina et al., 2023). Запасы валежника в 2024 г. 
были определены нами на постоянной пробной 
площади в исследуемом ельнике, как 642 м3 га–1.  
Если воспользоваться нашими данными 
по запасам мертвой древесины ели по 0–5 ста-
диям разложения на той же площади, а также 
по плотности древесины и содержанию углеро-
да на различных стадиях разложения мертвой 
древесины ели в том же исследовании (Khanina 
et al., 2023), можно оценить текущий запас уг-
лерода валежника как 96.2 т С га–1, что с учетом 
средней константы разложения древесины ели 
соответствует скорости потери углерода с раз-
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ложением валежа 673  г С·м–2 год–1. Это очень 
значительная величина.

Экосистемный обмен диоксида углерода. Годо-
вой чистый экосистемный обмен (NEE — net 
ecosystem exchange) СО2 в 2024 г. оценивался, 
как и в предшествующие годы, с применением 
метода турбулентных пульсаций. В первые ме-
сяцы 2021 и 2024 гг. (январь–март) исследуемая 
экосистема имела положительный NEE (явля-
лась источником СО2 для атмосферы) со средней 
величиной потока +0.51 ± 0.25 г C м–2 сут–1 и не-
большими межсуточными вариациями (рис. 10). 
С начала апреля межсуточные вариации суще-
ственно увеличиваются, появляются отрица-
тельные значения (сток СО2 из атмосферы). Эти 
изменения связаны с началом теплого периода 
и активной вегетации. В мае–августе преобла-
дают отрицательные среднесуточные величины 
NEE, что связано с  более высоким уровнем 
фотосинтеза по сравнению с суммарным дыха-
нием экосистемы. Однако уже с начала сентября 
наблюдаются преимущественно положительные 
суточные NEE при сохранении высоких межсу-
точных вариаций. Такая ситуация продолжается 
до конца ноября, когда экосистема входит в ре-
жим холодного периода с  NEE, аналогичным 
стартовому периоду календарного года.

Следует обратить внимание, что в  2024  г. 
значения NEE за май–октябрь были в большей 
степени смещены в  область отрицательных 
значений, соответствующую поглощению СО2 
из атмосферы, по сравнению с 2021 г. Это из-
менение следует считать результатом восстанов-
ления растительного покрова, сопровождающе-
гося увеличением запасов углерода в биомассе 

подроста, подлеска и  живого напочвенного 
покрова (см. табл. 1) после критического усы-
хания древостоя в 2021 г. Межгодовые различия 
углеродного баланса исследуемой экосистемы 
ярче проявляются в  динамике кумулятивного 
NEE, то есть сумме суточных значений, отсчи-
тываемой с начала года (рис. 11). 

В периоды устойчивого возрастания кумуля-
тивного NEE экосистема является источником 
СО2 для атмосферы, в периоды убывания — сто-
ком. Чем больше угол наклона кумулятивного 
NEE, тем больше величины добавляемых суточ-
ных значений. В периоды с 1 января по 1 апреля 
в  рассматриваемые годы наблюдений (2018, 
2021, 2024) экосистема станции “Лог Таежный” 
являлась нетто-источником СО2. Причем к на-
чалу  апреля в  разные годы были накоплены 
близкие суммы NEE (38–44 г С·м–2), что обу-
словлено как небольшими величинами потоков 
в холодный период, так и тем, что различия еще 
не успевают накопиться. В конце марта–нача-
ле апреля экосистема становится нетто-стоком 
СО2 в результате активизации фотосинтеза, что 
выражается в  снижении кумулятивного NEE. 
При этом до конца мая траектории кумулятив-
ного NEE располагаются достаточно близко, 
то есть отличия углеродного баланса в разные 
годы малы. Однако расхождение межгодовых 
траекторий начинает существенно возрастать 
с  начала  июня. В  2018  г., когда запас живых 
деревьев был равным суммарному объему сухо-
стоя и валежника (см. рис. 6), в период с 1 июня 
по  конец  сентября был отмечен сток СО2, 
причем активнее всего углерод накапливался 
в июне и первой декаде июля 2018 г. до начала 
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Рис. 10. Cуточный чистый экосистемный обмен СО2. Приведены суточные значения и пятидневное скользящее 
среднее. Положительные значения соответствуют источнику СО2 в атмосферу, отрицательные — поглощению СО2 
экосистемой.
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засушливого периода, который обычно наступа-
ет в третьем квартале.

В 2021  г. объем валежника был равен сум-
марному объему живой древесины и сухостоя 
(см.  рис. 6). В  засушливый период с  8  июня 
по 8 августа кумулятивный поток практически 
постоянен, то есть баланс СО2 был близок к ну-
левому. После сильной июльской засухи эко-
система до конца этого года перешла в режим 
источника СО2.

В 2024  г. основной объем древесины был 
представлен валежником, а  молодой подрост 
и  живой напочвенный покров обеспечивали 
сток СО2 до  начала сухого периода в  первых 
числах августа. В этом году сток СО2 отмечался 
в период с начала апреля по конец июля, что 
на два месяца меньше, чем в 2018 г.

Согласно полученным оценкам величина 
нетто-баланса в 2024 г. составила источник ве-
личиной +51 ± 122 г С·м–2 год–1, что меньше чем 
в 2021 г., когда лесные экосистемы впервые ста-
ли нетто-источником (+267 ± 113 г С·м–2 год–1).  
Сокращение нетто-эмиссии в 2024 г. в основном 
связано с активным ростом подроста и подлеска 
после резкого осветления верхнего яруса дре-
востоя. 

Таким образом, исследуемая экосистема 
в 2024 г. представляла собой выраженный нет-
то-источник СО2 для атмосферы. Это соответ-
ствует тому, что в этом году вся зона охвата пред-
ставляла собой полностью погибший древостой 
ели с  преобладанием запасов валежника над 
сухостоем. Если провести сравнение с ситуаци-
ей, которая была описана на той же территории 
в 2010–2011 гг. (Karelin et al., 2021), когда еще 
повсеместно преобладал живой древостой, то 
в этот период участок функционировал как зна-
чительный нетто-сток СО2 (–300 г С·м–2 год–1), 

который в последующие годы демонстрировал 
тенденцию к  снижению по  мере отмирания 
елей (2018: –65 ± 177 г С·м–2 год–1). При этом 
уровень дыхания почвы составлял тогда заметно 
меньшую величину (+625), как и общий вклад 
эмиссии от сухостоя и валежника (+190) (Karelin 
et al., 2021).

Оценки чистого экосистемного обмена, полу-
ченные на эколого-климатической станции “Лог 
Таежный”, согласуются с опубликованными ис-
следованиями лесных экосистем России (Кури-
чева и др., 2023) и других регионов мира (Rebane 
et al., 2019; Virkkala et al., 2022). Большинство 
исследований NEE лесных экосистем после 
нарушений, основанных на  методе вихревой 
ковариации, посвящены оценке последствий 
лесных пожаров и  сплошных рубок (Ольчев 
и  др., 2017; Mamkin et  al., 2016; Rebane et  al., 
2019), а оценке воздействия усыхания и распада 
древостоев на NEE уделяется меньше внимания. 
После нарушений лесные экосистемы становят-
ся нетто-источником СО2 в течение нескольких 
лет после нарушения. Например, в  ельниках 
Швеции, пораженных короедом-типографом, 
NEE составлял +80…+150 г С·м–²·год–¹ (Virkkala 
et al., 2022). В Канаде после пожаров экосисте-
мы остаются нетто-источником CO2 до 20 лет 
(Bond-Lamberty et  al., 2020). Спустя годы лес 
восстанавливает свою поглощающую способ-
ность. Время, необходимое для восстановления, 
зависит от интенсивности нарушений и внеш-
них условий. Так после пожарных нарушений 
значение NEE лесной экосистемы может дости-
гать отрицательных значений в течение 50 лет, 
после сплошных рубок — 20 лет, после вспышек 
численности насекомых-фитофагов и  гибели 
древостоя — 5 лет (Rebane et al., 2019). Ожида-
ется, что лесные экосистемы “Лога Таежного” 
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Рис. 11. Кумулятивный (накопленный) чистый экосистемный обмен СО2 (NEE) в экосистеме елового леса.
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восстановятся до состояния нетто-поглотителя 
СО2 в ближайшие десятилетия в связи с хорошей 
сохранностью подроста и подлеска после распа-
да древостоев.

ЗАКЛЮЧЕНИЕ
В 2024  г. погодные условия отличались 

от  последней климатической нормы, год был 
существенно теплее и несколько суше, что в це-
лом продолжило тенденцию последних 4-х лет. 
При этом, хотя дыхание почвы по сравнению 
с  2023  г. несколько снизилось, тем не  менее, 
тенденция последних четырех лет на его повы-
шение сохранилась. Показатели эмиссии СО2, 
связанные с  сухостоем, также несколько воз-
росли или мало изменились за последние 4 года. 
За весь наиболее обеспеченный наблюдениями 
период (2014–2024), тем не менее, сохраняется 
тренд в сторону небольшого снижения скорости 
эмиссии. В 2024 г. на территории “Лога Таежно-
го” отсутствовали живые ели в составе древостоя 
(что было зафиксировано еще в 2023 г.), а также 
прошли массовые ветроломы, в результате кото-
рых остались пни высотой не более 5 м. В теку-
щем состоянии экосистема представляет собой 
сильно выраженный годовой источник СО2 
для атмосферы, который почти целиком опре-
деляется максимальными запасами валежника 
и остатков сухостоя, а также дыханием почвы. 

Как показывают наши оценки в  пересчете 
на  единицу площади, с  использованием на-
копленных данных по эмиссии СО2 из почвы, 
от сухостоя и валежника, в настоящий период 
(2024 г.) поток экосистемного дыхания из всех 
перечисленных резервуаров с  учетом допол-
нительных источников на  95.5%, т.е. почти 
вдвое, превышает аналогичный показатель 
начала наблюдений на эколого-климатической 
станции в  2009  г. (900 < 1760  г С·м–2 год–1), 
при этом основную часть прироста составляет 
в  настоящее время эмиссия от  валежника 
(54.5%), на втором месте эмиссия от сухостоя 
и связанных с ним дополнительных источников 
(32.9%), и  лишь на  последнем месте прирост 
от усиления дыхания почвы (12.6%). При этом, 
в 2024 г. на основании данных по экосистемно-
му дыханию и  нетто-балансу углерода можно 
с достаточно высокой степенью доверия оценить 
вклад продукции яруса подроста и  подлеска 
(–1535 г С·м–2 год–1), поскольку живых деревьев 
первого яруса древостоя на участке не осталось.

Наблюдаемое в  настоящее время состоя-
ние изучаемой лесной экосистемы, ставшей 
устойчивым источником СО2 для атмосферы, 
является прямым следствием полной гибели 
древостоя, произошедшей в результате усили-
вающегося за последние 15–16 лет потепления, 

сопровождающегося периодическими засухами, 
и связанных с ними вторичных деструктивных 
факторов (вспышки численности насекомых-
фитофагов и  ксилотрофных грибов, гибель 
деревьев, массовые ветроломы). При этом по-
вышение температуры, вероятнее всего, не ока-
зало существенного влияния на  этот процесс 
в качестве прямого фактора. Это можно конста-
тировать, как в отношении аномально теплого 
2024 г., так и всего наиболее теплого периода 
наших наблюдений (2020–2024 гг.).
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Variability of CO2 Fluxes During Spruce Forest Dieback at “Log Tayozhny”  
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The article presents the results of long-term monitoring of net ecosystem exchange and carbon dioxide 
emissions from soil and dead wood in a forest ecosystem undergoing drying and spruce stand dieback at 
the footprint of the “Log Tayozhny” eco-climatic field station (Valdai National Park, Novgorod oblast, 
Russia). The death and decay of overmature even-aged spruce stands caused by periodic droughts, the 
impact of bark beetle and wood-destroying fungi, and windfalls result in reduction of primary production 
and increase of the respiration component of the CO2 balance and its long-term shift to the region of a 
pronounced carbon source for the atmosphere, whereas the direct impact of rising temperatures does not 
lead to such an effect. 

Keywords: soil respiration, monitoring, carbon dioxide, net ecosystem exchange, spruce forest, forest 
dieback, warmest period, eco-climatic station
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